This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 33

2013 Germany Team Selection Test, 3

Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{ 1,2,\ldots , n \}$ such that the sums of the different pairs are different integers not exceeding $n$?

2013 Brazil Team Selection Test, 2

Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{ 1,2,\ldots , n \}$ such that the sums of the different pairs are different integers not exceeding $n$?

2005 Greece Team Selection Test, 4

There are $10001$ students at an university. Some students join together to form several clubs (a student may belong to different clubs). Some clubs join together to form several societies (a club may belong to different societies). There are a total of $k$ societies. Suppose that the following conditions hold: [i]i.)[/i] Each pair of students are in exactly one club. [i]ii.)[/i] For each student and each society, the student is in exactly one club of the society. [i]iii.)[/i] Each club has an odd number of students. In addition, a club with ${2m+1}$ students ($m$ is a positive integer) is in exactly $m$ societies. Find all possible values of $k$. [i]Proposed by Guihua Gong, Puerto Rico[/i]

2005 Italy TST, 1

A stage course is attended by $n \ge 4$ students. The day before the final exam, each group of three students conspire against another student to throw him/her out of the exam. Prove that there is a student against whom there are at least $\sqrt[3]{(n-1)(n- 2)} $conspirators.

1992 China Team Selection Test, 1

16 students took part in a competition. All problems were multiple choice style. Each problem had four choices. It was said that any two students had at most one answer in common, find the maximum number of problems.

2000 IMO Shortlist, 5

In the plane we have $n$ rectangles with parallel sides. The sides of distinct rectangles lie on distinct lines. The boundaries of the rectangles cut the plane into connected regions. A region is [i]nice[/i] if it has at least one of the vertices of the $n$ rectangles on the boundary. Prove that the sum of the numbers of the vertices of all nice regions is less than $40n$. (There can be nonconvex regions as well as regions with more than one boundary curve.)

2022 Serbia Team Selection Test, P3

Let $n$ be an odd positive integer. Given are $n$ balls - black and white, placed on a circle. For a integer $1\leq k \leq n-1$, call $f(k)$ the number of balls, such that after shifting them with $k$ positions clockwise, their color doesn't change. a) Prove that for all $n$, there is a $k$ with $f(k) \geq \frac{n-1}{2}$. b) Prove that there are infinitely many $n$ (and corresponding colorings for them) such that $f(k)\leq \frac{n-1}{2}$ for all $k$.

2015 Bosnia And Herzegovina - Regional Olympiad, 4

There are $10001$ students at an university. Some students join together to form several clubs (a student may belong to different clubs). Some clubs join together to form several societies (a club may belong to different societies). There are a total of $k$ societies. Suppose that the following conditions hold: [i]i.)[/i] Each pair of students are in exactly one club. [i]ii.)[/i] For each student and each society, the student is in exactly one club of the society. [i]iii.)[/i] Each club has an odd number of students. In addition, a club with ${2m+1}$ students ($m$ is a positive integer) is in exactly $m$ societies. Find all possible values of $k$. [i]Proposed by Guihua Gong, Puerto Rico[/i]

2012 Romanian Masters In Mathematics, 5

Given a positive integer $n\ge 3$, colour each cell of an $n\times n$ square array with one of $\lfloor (n+2)^2/3\rfloor$ colours, each colour being used at least once. Prove that there is some $1\times 3$ or $3\times 1$ rectangular subarray whose three cells are coloured with three different colours. [i](Russia) Ilya Bogdanov, Grigory Chelnokov, Dmitry Khramtsov[/i]

2023 4th Memorial "Aleksandar Blazhevski-Cane", P5

There are $1000$ students in a school. Every student has exactly $4$ friends. A group of three students $ \left \{A,B,C \right \}$ is said to be a [i]friendly triplet[/i] if any two students in the group are friends. Determine the maximal possible number of friendly triplets. [i]Proposed by Nikola Velov[/i]

2013 Taiwan TST Round 1, 4

Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{ 1,2,\ldots , n \}$ such that the sums of the different pairs are different integers not exceeding $n$?

1987 IMO, 1

Let $p_n(k)$ be the number of permutations of the set $\{1,2,3,\ldots,n\}$ which have exactly $k$ fixed points. Prove that $\sum_{k=0}^nk p_n(k)=n!$.

2005 Italy TST, 1

A stage course is attended by $n \ge 4$ students. The day before the final exam, each group of three students conspire against another student to throw him/her out of the exam. Prove that there is a student against whom there are at least $\sqrt[3]{(n-1)(n- 2)} $conspirators.

2023 Romanian Master of Mathematics Shortlist, C1

Determine all integers $n \geq 3$ for which there exists a con guration of $n$ points in the plane, no three collinear, that can be labelled $1$ through $n$ in two different ways, so that the following condition be satis fied: For every triple $(i,j,k), 1 \leq i < j < k \leq n$, the triangle $ijk$ in one labelling has the same orientation as the triangle labelled $ijk$ in the other, except for $(i,j,k) = (1,2,3)$.

2005 Germany Team Selection Test, 3

Let ${n}$ and $k$ be positive integers. There are given ${n}$ circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of $n$ distinct colors so that each color is used at least once and exactly $k$ distinct colors occur on each circle. Find all values of $n\geq 2$ and $k$ for which such a coloring is possible. [i]Proposed by Horst Sewerin, Germany[/i]

2005 India IMO Training Camp, 3

There are $10001$ students at an university. Some students join together to form several clubs (a student may belong to different clubs). Some clubs join together to form several societies (a club may belong to different societies). There are a total of $k$ societies. Suppose that the following conditions hold: [i]i.)[/i] Each pair of students are in exactly one club. [i]ii.)[/i] For each student and each society, the student is in exactly one club of the society. [i]iii.)[/i] Each club has an odd number of students. In addition, a club with ${2m+1}$ students ($m$ is a positive integer) is in exactly $m$ societies. Find all possible values of $k$. [i]Proposed by Guihua Gong, Puerto Rico[/i]

1992 China Team Selection Test, 1

16 students took part in a competition. All problems were multiple choice style. Each problem had four choices. It was said that any two students had at most one answer in common, find the maximum number of problems.

2006 Irish Math Olympiad, 5

Let ${n}$ and $k$ be positive integers. There are given ${n}$ circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of $n$ distinct colors so that each color is used at least once and exactly $k$ distinct colors occur on each circle. Find all values of $n\geq 2$ and $k$ for which such a coloring is possible. [i]Proposed by Horst Sewerin, Germany[/i]

2010 Iran MO (2nd Round), 6

A school has $n$ students and some super classes are provided for them. Each student can participate in any number of classes that he/she wants. Every class has at least two students participating in it. We know that if two different classes have at least two common students, then the number of the students in the first of these two classes is different from the number of the students in the second one. Prove that the number of classes is not greater that $\left(n-1\right)^2$.

2025 Bulgarian Winter Tournament, 10.3

In connection with the formation of a stable government, the President invited all $240$ Members of Parliament to three separate consultations, where each member participated in exactly one consultation, and at each consultation there has been at least one member present. Discussions between pairs of members are to take place to discuss the consultations. Is it possible for these discussions to occur in such a way that there exists a non-negative integer $k$, such that for every two members who participated in different consultations, there are exactly $k$ members who participated in the remaining consultation, with whom each of the two members has a conversation, and exactly $k$ members who participated in the remaining consultation, with whom neither of the two has a conversation? If yes, then find all possible values of $k$.

2005 Greece Team Selection Test, 4

There are $10001$ students at an university. Some students join together to form several clubs (a student may belong to different clubs). Some clubs join together to form several societies (a club may belong to different societies). There are a total of $k$ societies. Suppose that the following conditions hold: [i]i.)[/i] Each pair of students are in exactly one club. [i]ii.)[/i] For each student and each society, the student is in exactly one club of the society. [i]iii.)[/i] Each club has an odd number of students. In addition, a club with ${2m+1}$ students ($m$ is a positive integer) is in exactly $m$ societies. Find all possible values of $k$. [i]Proposed by Guihua Gong, Puerto Rico[/i]

2019 Philippine MO, 2

Twelve students participated in a theater festival consisting of $n$ different performances. Suppose there were six students in each performance, and each pair of performances had at most two students in common. Determine the largest possible value of $n$.

2012 Romanian Master of Mathematics, 5

Given a positive integer $n\ge 3$, colour each cell of an $n\times n$ square array with one of $\lfloor (n+2)^2/3\rfloor$ colours, each colour being used at least once. Prove that there is some $1\times 3$ or $3\times 1$ rectangular subarray whose three cells are coloured with three different colours. [i](Russia) Ilya Bogdanov, Grigory Chelnokov, Dmitry Khramtsov[/i]

2013 Moldova Team Selection Test, 4

Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{ 1,2,\ldots , n \}$ such that the sums of the different pairs are different integers not exceeding $n$?

2014 All-Russian Olympiad, 4

Given are $n$ pairwise intersecting convex $k$-gons on the plane. Any of them can be transferred to any other by a homothety with a positive coefficient. Prove that there is a point in a plane belonging to at least $1 +\frac{n-1}{2k}$ of these $k$-gons.