This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 509

2013 Czech-Polish-Slovak Junior Match, 3

The $ABCDE$ pentagon is inscribed in a circle and $AB = BC = CD$. Segments $AC$ and $BE$ intersect at $K$, and Segments $AD$ and $CE$ intersect at point$ L$. Prove that $AK = KL$.

2016 Hanoi Open Mathematics Competitions, 12

In the trapezoid $ABCD, AB // CD$ and the diagonals intersect at $O$. The points $P, Q$ are on $AD, BC$ respectively such that $\angle AP B = \angle CP D$ and $\angle AQB = \angle CQD$. Show that $OP = OQ$.

2020 Estonia Team Selection Test, 2

Let $M$ be the midpoint of side BC of an acute-angled triangle $ABC$. Let $D$ and $E$ be the center of the excircle of triangle $AMB$ tangent to side $AB$ and the center of the excircle of triangle $AMC$ tangent to side $AC$, respectively. The circumscribed circle of triangle $ABD$ intersects line$ BC$ for the second time at point $F$, and the circumcircle of triangle $ACE$ is at point $G$. Prove that $| BF | = | CG|$.

1998 North Macedonia National Olympiad, 1

Let $ABCDE$ be a convex pentagon with $AB = BC =CA$ and $CD = DE = EC$. Let $T$ be the centroid of $\vartriangle ABC$, and $N$ be the midpoint of $AE$. Compute $\angle NT D$

1949-56 Chisinau City MO, 45

Determine the locus of points, from which the tangent segments to two given circles are equal.

2016 Argentina National Olympiad Level 2, 2

Point $D$ on the side $BC$ of the acute triangle $ABC$ is chosen so that $AD = AC$. Let $P$ and $Q$ be the feet of the perpendiculars from $C$ and $D$ on the side $AB$, respectively. Suppose that $AP^2 + 3BP^2 = AQ^2 + 3BQ^2$. Determine the measure of angle $\angle ABC$.

1995 ITAMO, 4

An acute-angled triangle $ABC$ is inscribed in a circle with center $O$. The bisector of $\angle A$ meets $BC$ at $D$, and the perpendicular to $AO$ through $D$ meets the segment $AC$ in a point $P$. Show that $AB = AP$.

Swiss NMO - geometry, 2018.6

Let $k$ be the incircle of the triangle $ABC$ with the center of the incircle $I$. The circle $k$ touches the sides $BC, CA$ and $AB$ in points $D, E$ and $F$. Let $G$ be the intersection of the straight line $AI$ and the circle $k$, which lies between $A$ and $I$. Assume $BE$ and $FG$ are parallel. Show that $BD = EF$.

2016 Novosibirsk Oral Olympiad in Geometry, 6

An arbitrary point $M$ inside an equilateral triangle $ABC$ was connected to vertices. Prove that on each side the triangle can be selected one point at a time so that the distances between them would be equal to $AM, BM, CM$.

2006 Switzerland - Final Round, 7

Let $ABCD$ be a cyclic quadrilateral with $\angle ABC = 60^o$ and $| BC | = | CD |$. Prove that $|CD| + |DA| = |AB|$

2006 Junior Tuymaada Olympiad, 1

On the equal $ AC $ and $ BC $ of an isosceles right triangle $ ABC $ , points $ D $ and $ E $ are marked respectively, so that $ CD = CE $. Perpendiculars on the straight line $ AE $, passing through the points $ C $ and $ D $, intersect the side $ AB $ at the points $ P $ and $ Q $.Prove that $ BP = PQ $.

Kyiv City MO Seniors Round2 2010+ geometry, 2019.11.3.1

It is known that in the triangle $ABC$ the smallest side is $BC$. Let $X, Y, K$ and $L$ - points on the sides $AB, AC$ and on the rays $CB, BC$, respectively, are such that $BX = BK = BC =CY =CL$. The line $KX$ intersects the line $LY$ at the point $M$. Prove that the intersection point of the medians $\vartriangle KLM$ coincides with the center of the inscribed circle $\vartriangle ABC$.

1999 All-Russian Olympiad Regional Round, 10.6

Triangle $ABC$ has an inscribed circle tangent to sides $AB$, $AC$ and $BC$ at points $C_1$, $B_1$ and $A_1 $ respectively. Let $K$ be a point on the circle diametrically opposite to point $C_1$, $D$ be the intersection point of lines $B_1C_1$ and $A_1K$. Prove that $CD = CB_1$.

2021 Novosibirsk Oral Olympiad in Geometry, 5

On the legs $AC$ and $BC$ of an isosceles right-angled triangle with a right angle $C$, points $D$ and $E$ are taken, respectively, so that $CD = CE$. Perpendiculars on line $AE$ from points $C$ and $D$ intersect segment $AB$ at points $P$ and $Q$, respectively. Prove that $BP = PQ$.

2022 Czech-Polish-Slovak Junior Match, 3

The points $D, E, F$ lie respectively on the sides $BC$, $CA$, $AB$ of the triangle ABC such that $F B = BD$, $DC = CE$, and the lines $EF$ and $BC$ are parallel. Tangent to the circumscribed circle of triangle $DEF$ at point $F$ intersects line $AD$ at point $P$. Perpendicular bisector of segment $EF$ intersects the segment $AC$ at $Q$. Prove that the lines $P Q$ and $BC$ are parallel.

2021 Novosibirsk Oral Olympiad in Geometry, 6

Inside the equilateral triangle $ABC$, points $P$ and $Q$ are chosen so that the quadrilateral $APQC$ is convex, $AP = PQ = QC$ and $\angle PBQ = 30^o$. Prove that $AQ = BP$.

Kyiv City MO Juniors 2003+ geometry, 2011.9.41

The triangle $ABC$ is inscribed in a circle. At points $A$ and $B$ are tangents to this circle, which intersect at point $T$. A line drawn through the point $T$ parallel to the side $AC$ intersects the side $BC$ at the point $D$. Prove that $AD = CD$.

Novosibirsk Oral Geo Oly VIII, 2023.4

An isosceles triangle $ABC$ with base $AC$ is given. On the rays $CA$, $AB$ and $BC$, the points $D, E$ and $F$ were marked, respectively, in such a way that $AD = AC$, $BE = BA$ and $CF = CB$. Find the sum of the angles $\angle ADB$, $\angle BEC$ and $\angle CFA$.

1994 Abels Math Contest (Norwegian MO), 1b

Let $C$ be a point on the extension of the diameter $AB$ of a circle. A line through $C$ is tangent to the circle at point $N$. The bisector of $\angle ACN$ meets the lines $AN$ and $BN$ at $P$ and $Q$ respectively. Prove that $PN = QN$.

2018 Costa Rica - Final Round, G1

Let $O$ be the center of the circle circumscribed to $\vartriangle ABC$, and let $ P$ be any point on $BC$ ($P \ne B$ and $P \ne C$). Suppose that the circle circumscribed to $\vartriangle BPO$ intersects $AB$ at $R$ ($R \ne A$ and $R \ne B$) and that the circle circumscribed to $\vartriangle COP$ intersects $CA$ at point $Q$ ($Q \ne C$ and $Q \ne A$). 1) Show that $\vartriangle PQR \sim \vartriangle ABC$ and that$ O$ is orthocenter of $\vartriangle PQR$. 2) Show that the circles circumscribed to the triangles $\vartriangle BPO$, $\vartriangle COP$, and $\vartriangle PQR$ all have the same radius.

2015 Dutch Mathematical Olympiad, 3 juniors

In quadrilateral $ABCD$ sides $BC$ and $AD$ are parallel. In each of the four vertices we draw an angular bisector. The angular bisectors of angles $A$ and $B$ intersect in point $P$, those of angles $B$ and $C$ intersect in point $Q$, those of angles $C$ and $D$ intersect in point $R$, and those of angles $D$ and $A$ intersect in point S. Suppose that $PS$ is parallel to $QR$. Prove that $|AB| =|CD|$. [asy] unitsize(1.2 cm); pair A, B, C, D, P, Q, R, S; A = (0,0); D = (3,0); B = (0.8,1.5); C = (3.2,1.5); S = extension(A, incenter(A,B,D), D, incenter(A,C,D)); Q = extension(B, incenter(A,B,C), C, C + incenter(A,B,D) - A); P = extension(A, S, B, Q); R = extension(D, S, C, Q); draw(A--D--C--B--cycle); draw(B--Q--C); draw(A--S--D); dot("$A$", A, SW); dot("$B$", B, NW); dot("$C$", C, NE); dot("$D$", D, SE); dot("$P$", P, dir(90)); dot("$Q$", Q, dir(270)); dot("$R$", R, dir(90)); dot("$S$", S, dir(90)); [/asy] Attention: the figure is not drawn to scale.

2009 Belarus Team Selection Test, 2

Does there exist a convex pentagon $A_1A_2A_3A_4A_5$ and a point $X$ inside it such that $XA_i=A_{i+2}A_{i+3}$ for all $i=1,...,5$ (all indices are considered modulo $5$) ? I. Voronovich

2009 Dutch IMO TST, 5

Suppose that we are given an $n$-gon of which all sides have the same length, and of which all the vertices have rational coordinates. Prove that $n$ is even.

2021 SAFEST Olympiad, 4

Let $ABC$ be a triangle with $AB > AC$. Let $D$ be a point on the side $AB$ such that $DB = DC$ and let $M$ be the midpoint of $AC$. The line parallel to $BC$ passing through $D$ intersects the line $BM$ in $K$. Show that $\angle KCD = \angle DAC.$

2020 Ukrainian Geometry Olympiad - December, 3

About the pentagon $ABCDE$ we know that $AB = BC = CD = DE$, $\angle C = \angle D =108^o$, $\angle B = 96^o$. Find the value in degrees of $\angle E$.