This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 296

1940 Moscow Mathematical Olympiad, 063

Points $A, B, C$ are vertices of an equilateral triangle inscribed in a circle. Point $D$ lies on the shorter arc $\overarc {AB}$ . Prove that $AD + BD = DC$.

1999 Estonia National Olympiad, 5

Let $C$ be an interior point of line segment $AB$. Equilateral triangles $ADC$ and $CEB$ are constructed to the same side from $AB$. Find all points which can be the midpoint of the segment $DE$.

2023 Chile Junior Math Olympiad, 3

Let $\vartriangle ABC$ be an equilateral triangle with side $1$. Four points are marked $P_1$, $P_2$, $P_3$, $P_4$ on side $AC$ and four points $Q_1$, $Q_2$, $Q_3$, $Q_4$ on side $AB$ (see figure) of such a way to generate $9$ triangles of equal area. Find the length of segment $AP_4$. [img]https://cdn.artofproblemsolving.com/attachments/5/f/29243932262cb963b376244f4c981b1afe87c6.png[/img] PS. Easier version of [url=https://artofproblemsolving.com/community/c6h3323141p30741525]2023 Chile NMO L2 P3[/url]

2018 Hanoi Open Mathematics Competitions, 2

What is the largest area of a regular hexagon that can be drawn inside the equilateral triangle of side $3$? A. $3\sqrt7$ B. $\frac{3 \sqrt3}{2}$ C. $2\sqrt5$ D. $\frac{3\sqrt3}{8}$ E. $3\sqrt5$

1972 Spain Mathematical Olympiad, 5

Given two parallel lines $r$ and $r'$ and a point $P$ on the plane that contains them and that is not on them, determine an equilateral triangle whose vertex is point $P$ , and the other two, one on each of the two lines. [img]https://cdn.artofproblemsolving.com/attachments/9/3/1d475eb3e9a8a48f4a85a2a311e1bda978e740.png[/img]

2017 Hanoi Open Mathematics Competitions, 9

Prove that the equilateral triangle of area $1$ can be covered by five arbitrary equilateral triangles having the total area $2$.

2012 Tournament of Towns, 7

Let $AH$ be an altitude of an equilateral triangle $ABC$. Let $I$ be the incentre of triangle $ABH$, and let $L, K$ and $J$ be the incentres of triangles $ABI,BCI$ and $CAI$ respectively. Determine $\angle KJL$.

Estonia Open Senior - geometry, 2002.2.3

Let $ABCD$ be a rhombus with $\angle DAB = 60^o$. Let $K, L$ be points on its sides $AD$ and $DC$ and $M$ a point on the diagonal $AC$ such that $KDLM$ is a parallelogram. Prove that triangle $BKL$ is equilateral.

2001 Kazakhstan National Olympiad, 6

Each interior point of an equilateral triangle with sides equal to $1$ lies in one of six circles of the same radius $ r $. Prove that $ r \geq \frac {{\sqrt 3}} {{10}} $.

2001 Junior Balkan Team Selection Tests - Moldova, 3

Let the convex quadrilateral $ABCD$ with $AD = BC$ ¸and $\angle A + \angle B = 120^o$. Take a point $P$ in the plane so that the line $CD$ separates the points $A$ and $P$, and the $DCP$ triangle is equilateral. Show that the triangle $ABP$ is equilateral. It is the true statement for a non-convex quadrilateral?

2013 Flanders Math Olympiad, 4

Consider (in the plane) three concentric circles with radii $1, 2$ and $3$ and equilateral triangle $\Delta$ such that on each of the three circles is one vertex of $\Delta$ . Calculate the length of the side of $\Delta$ . [img]https://1.bp.blogspot.com/-q40dl3TSQqE/Xy1QAcno_9I/AAAAAAAAMR8/11nsSA0syNAaGb3W7weTHsNpBeGQZXnHACLcBGAsYHQ/s0/flanders%2B2013%2Bp4.png[/img]

Durer Math Competition CD Finals - geometry, 2011.C5

Given a straight line with points $A, B, C$ and $D$. Construct using $AB$ and $CD$ regular triangles (in the same half-plane). Let $E,F$ be the third vertex of the two triangles (as in the figure) . The circumscribed circles of triangles $AEC$ and $BFD$ intersect in $G$ ($G$ is is in the half plane of triangles). Prove that the angle $AGD$ is $120^o$ [img]https://1.bp.blogspot.com/-66akc83KSs0/X9j2BBOwacI/AAAAAAAAM0M/4Op-hrlZ-VQRCrU8Z3Kc3UCO7iTjv5ZQACLcBGAsYHQ/s0/2011%2BDurer%2BC5.png[/img]

1961 All Russian Mathematical Olympiad, 006

a) Points $A$ and $B$ move uniformly and with equal angle speed along the circumferences with $O_a$ and $O_b$ centres (both clockwise). Prove that a vertex $C$ of the equilateral triangle $ABC$ also moves along a certain circumference uniformly. b) The distance from the point $P$ to the vertices of the equilateral triangle $ABC$ equal $|AP|=2, |BP|=3$. Find the maximal value of $CP$.

Oliforum Contest V 2017, 2

Find all quadrilaterals which can be covered (without overlappings) with squares with side $ 1$ and equilateral triangles with side $ 1$. (Emanuele Tron)

2002 District Olympiad, 3

Consider the equilateral triangle $ABC$ with center of gravity $G$. Let $M$ be a point, inside the triangle and $O$ be the midpoint of the segment $MG$. Three segments go through $M$, each parallel to one side of the triangle and with the ends on the other two sides of the given triangle. a) Show that $O$ is at equal distances from the midpoints of the three segments considered. b) Show that the midpoints of the three segments are the vertices of an equilateral triangle.

2007 Oral Moscow Geometry Olympiad, 4

The midpoints of the opposite sides of the hexagon are connected by segments. It turned out that the points of pairwise intersection of these segments form an equilateral triangle. Prove that the drawn segments are equal. (M. Volchkevich)

1993 Tournament Of Towns, (395) 3

Consider the hexagon which is formed by the vertices of two equilateral triangles (not necessarily equal) when the triangles intersect. Prove that the area of the hexagon is unchanged when one of the triangles is translated (without rotating) relative to the other in such a way that the hexagon continues to be defined. (V Proizvolov)

2015 Dutch IMO TST, 3

An equilateral triangle $ABC$ is given. On the line through $B$ parallel to $AC$ there is a point $D$, such that $D$ and $C$ are on the same side of the line $AB$. The perpendicular bisector of $CD$ intersects the line $AB$ in $E$. Prove that triangle $CDE$ is equilateral.

Kyiv City MO Juniors Round2 2010+ geometry, 2019.9.3

The equilateral triangle $ABC$ is inscribed in the circle $w$. Points $F$ and $E$ on the sides $AB$ and $AC$, respectively, are chosen such that $\angle ABE+ \angle ACF = 60^o$. The circumscribed circle of $\vartriangle AFE$ intersects the circle $w$ at the point $D$ for the second time. The rays $DE$ and $DF$ intersect the line $BC$ at the points $X$ and $Y$, respectively. Prove that the center of the inscribed circle of $\vartriangle DXY$ does not depend on the choice of points $F$ and $E$. (Hilko Danilo)

Durer Math Competition CD Finals - geometry, 2022.C3

To the exterior of side $AB$ of square $ABCD$, we have drawn the regular triangle $ABE$. Point $A$ reflected on line $BE$ is $F$, and point $E$ reflected on line $BF$ is $G$. Let the perpendicular bisector of segment $FG$ meet segment $AD$ at $X$. Show that the circle centered at $X$ with radius $XA$ touches line$ FB$.

2003 District Olympiad, 1

Let $ABC$ be an equilateral triangle. On the plane $(ABC)$ rise the perpendiculars $AA'$ and $BB'$ on the same side of the plane, so that $AA' = AB$ and $BB' =\frac12 AB$. Determine the measure the angle between the planes $(ABC)$ and $(A'B'C')$.

Estonia Open Senior - geometry, 2014.1.4

In a plane there is a triangle $ABC$. Line $AC$ is tangent to circle $c_A$ at point $C$ and circle $c_A$ passes through point $B$. Line $BC$ is tangent to circle $c_B$ at point $C$ and circle $c_B$ passes through point $A$. The second intersection point $S$ of circles $c_A$ and $c_B$ coincides with the incenter of triangle $ABC$. Prove that the triangle $ABC$ is equilateral.

1962 Poland - Second Round, 5

In the plane there is a square $ Q $ and a point $ P $. The point $ K $ runs through the perimeter of the square $ Q $. Find the locus of the vertex $ M $ of the equilateral triangle $ KPM $.

2021 Auckland Mathematical Olympiad, 2

Given five points inside an equilateral triangle of side length $2$, show that there are two points whose distance from each other is at most $ 1$.

2003 Czech And Slovak Olympiad III A, 2

On sides $BC,CA,AB$ of a triangle $ABC$ points $D,E,F$ respectively are chosen so that $AD,BE,CF$ have a common point, say $G$. Suppose that one can inscribe circles in the quadrilaterals $AFGE,BDGF,CEGD$ so that each two of them have a common point. Prove that triangle $ABC$ is equilateral.