Found problems: 63
1993 Tournament Of Towns, (363) 2
Let $O$ be the centre of the circle touching the side $AC$ of triangle $ABC$ and the continuations of the sides $BA$ and $BC$. $D$ is the centre of the circle passing through the points $A$, $B$ and $O$. Prove that the points $A$, $B$, $C$ and $D$ lie on a circle.
(YF Akurlich)
1949 Moscow Mathematical Olympiad, 160
Prove that for any triangle the circumscribed circle divides the line segment connecting the center of its inscribed circle with the center of one of the exscribed circles in halves.
2021-IMOC, G9
Let the incenter and the $A$-excenter of $\triangle ABC$ be $I$ and $I_A$, respectively. Let $BI$ intersect $AC$ at $E$ and $CI$ intersect $AB$ at $F$. Suppose that the reflections of $I$ with respect to $EF$, $FI_A$, $EI_A$ are $X$, $Y$, $Z$, respectively. Show that $\odot(XYZ)$ and $\odot(ABC)$ are tangent to each other.
2019 Oral Moscow Geometry Olympiad, 6
In the acute triangle $ABC$, the point $I_c$ is the center of excircle on the side $AB$, $A_1$ and $B_1$ are the tangency points of the other two excircles with sides $BC$ and $CA$, respectively, $C'$ is the point on the circumcircle diametrically opposite to point $C$. Prove that the lines $I_cC'$ and $A_1B_1$ are perpendicular.
2024 India IMOTC, 7
Let $ABC$ be an acute-angled triangle with $AB<AC$, incentre $I$, and let $M$ be the midpoint of major arc $BAC$. Suppose the perpendicular line from $A$ to segment $BC$ meets lines $BI$, $CI$, and $MI$ at points $P$, $Q$, and $K$ respectively. Prove that the $A-$median line in $\triangle AIK$ passes through the circumcentre of $\triangle PIQ$.
[i]Proposed by Pranjal Srivastava and Rohan Goyal[/i]
2014 Contests, 1
In triangle $ABC, \angle A= 45^o, BH$ is the altitude, the point $K$ lies on the $AC$ side, and $BC = CK$. Prove that the center of the circumscribed circle of triangle $ABK$ coincides with the center of an excircle of triangle $BCH$.
2012 Oral Moscow Geometry Olympiad, 4
In triangle $ABC$, point $I$ is the center of the inscribed circle points, points $I_A$ and $I_C$ are the centers of the excircles, tangent to sides $BC$ and $AB$, respectively. Point $O$ is the center of the circumscribed circle of triangle $II_AI_C$. Prove that $OI \perp AC$
2016 Germany National Olympiad (4th Round), 3
Let $I_a$ be the $A$-excenter of a scalene triangle $ABC$. And let $M$ be the point symmetric to $I_a$ about line $BC$.
Prove that line $AM$ is parallel to the line through the circumcenter and the orthocenter of triangle $I_aCB$.
2021 Saudi Arabia BMO TST, 2
Let $ABC$ be an acute, non-isosceles triangle with $H$ the orthocenter and $M$ the midpoint of $AH$. Denote $O_1$,$O_2$ as the centers of circles pass through $H$ and respectively tangent to $BC$ at $B$, $C$. Let $X$, $Y$ be the ex-centers which respect to angle $H$ in triangles $HMO_1$,$HMO_2$. Prove that $XY$ is parallel to $O_1O_2$.
Russian TST 2018, P1
Let $I{}$ be the incircle of the triangle $ABC$. Let $A_1, B_1$ and $C_1$ be the midpoints of the sides $BC, CA$ and $AB$ respectively. The point $X{}$ is symmetric to $I{}$ with respect to $A_1$. The line $\ell$ parallel to $BC$ and passing through $X{}$ intersects the lines $A_1B_1$ and $A_1C_1$ at $M{}$ and $N{}$ respectively. Prove that one of the excenters of the triangle $ABC$ lies on the $A_1$-excircle of the triangle $A_1MN$.
Kharkiv City MO Seniors - geometry, 2019.10.5
In triangle $ABC$, point$ I$ is incenter , $I_a$ is the $A$-excenter. Let $K$ be the intersection point of the $BC$ with the external bisector of the angle $BAC$, and $E$ be the midpoint of the arc $BAC$ of the circumcircle of triangle $ABC$. Prove that $K$ is the orthocenter of triangle $II_aE$.
2018 China Western Mathematical Olympiad, 4
In acute angled $\triangle ABC$, $AB > AC$, points $E, F$ lie on $AC, AB$ respectively, satisfying $BF+CE = BC$. Let $I_B, I_C$ be the excenters of $\triangle ABC$ opposite $B, C$ respectively, $EI_C, FI_B$ intersect at $T$, and let $K$ be the midpoint of arc $BAC$. Let $KT$ intersect the circumcircle of $\triangle ABC$ at $K,P$. Show $T,F,P,E$ concyclic.
2003 IMO Shortlist, 3
Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$.
[i]Proposed by C.R. Pranesachar, India [/i]