This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

2013 USA TSTST, 2

A finite sequence of integers $a_1, a_2, \dots, a_n$ is called [i]regular[/i] if there exists a real number $x$ satisfying \[ \left\lfloor kx \right\rfloor = a_k \quad \text{for } 1 \le k \le n. \] Given a regular sequence $a_1, a_2, \dots, a_n$, for $1 \le k \le n$ we say that the term $a_k$ is [i]forced[/i] if the following condition is satisfied: the sequence \[ a_1, a_2, \dots, a_{k-1}, b \] is regular if and only if $b = a_k$. Find the maximum possible number of forced terms in a regular sequence with $1000$ terms.

2000 Brazil National Olympiad, 2

Let $s(n)$ be the sum of all positive divisors of $n$, so $s(6) = 12$. We say $n$ is almost perfect if $s(n) = 2n - 1$. Let $\mod(n, k)$ denote the residue of $n$ modulo $k$ (in other words, the remainder of dividing $n$ by $k$). Put $t(n) = \mod(n, 1) + \mod(n, 2) + \cdots + \mod(n, n)$. Show that $n$ is almost perfect if and only if $t(n) = t(n-1)$.

2011 Saudi Arabia IMO TST, 3

Let $n$ be a positive integer. Prove that at least one of the integers $[2^n \cdot \sqrt2]$, $[2^{n+1} \cdot \sqrt2]$, $...$, $[2^{2n} \cdot \sqrt2]$ is even, where $[a]$ denotes the integer part of $a$.

2014 PUMaC Algebra A, 4

There is a sequence with $a(2)=0$, $a(3)=1$ and $a(n)=a\left(\left\lfloor\dfrac n2\right\rfloor\right)+a\left(\left\lceil\dfrac n2\right\rceil\right)$ for $n\geq 4$. Find $a(2014)$. [Note that $\left\lfloor\dfrac n2\right\rfloor$ and $\left\lceil\dfrac n2\right\rceil$ denote the floor function (largest integer $\leq\tfrac n2$) and the ceiling function (smallest integer $\geq\tfrac n2$), respectively.]

1998 APMO, 5

Find the largest integer $n$ such that $n$ is divisible by all positive integers less than $\sqrt[3]{n}$.

2019 Finnish National High School Mathematics Comp, 2

Prove that the number $\lfloor (2+\sqrt5)^{2019} \rfloor$ is not prime.

1990 Rioplatense Mathematical Olympiad, Level 3, 1

How many positive integer solutions does the equation have $$\left\lfloor\frac{x}{10}\right\rfloor= \left\lfloor\frac{x}{11}\right\rfloor + 1?$$ ($\lfloor x \rfloor$ denotes the integer part of $x$, for example $\lfloor 2\rfloor = 2$, $\lfloor \pi\rfloor = 3$, $\lfloor \sqrt2 \rfloor =1$)

2010 Today's Calculation Of Integral, 632

Find $\lim_{n\to\infty} \int_0^1 |\sin nx|^3dx\ (n=1,\ 2,\ \cdots).$ [i]2010 Kyoto Institute of Technology entrance exam/Textile, 2nd exam[/i]

1979 IMO Longlists, 56

Show that for every $n\in\mathbb{N}$, $n\sqrt{2}-\lfloor n\sqrt{2}\rfloor>\frac{1}{2n \sqrt{2}}$ and that for every $\epsilon >0$, there exists an $n\in\mathbb{N}$ such that $ n\sqrt{2}-\lfloor n\sqrt{2}\rfloor < \frac{1}{2n \sqrt{2}}+\epsilon$.

2010 ELMO Problems, 2

Let $r$ and $s$ be positive integers. Define $a_0 = 0$, $a_1 = 1$, and $a_n = ra_{n-1} + sa_{n-2}$ for $n \geq 2$. Let $f_n = a_1a_2\cdots a_n$. Prove that $\displaystyle\frac{f_n}{f_kf_{n-k}}$ is an integer for all integers $n$ and $k$ such that $0 < k < n$. [i]Evan O' Dorney.[/i]

2011 China Second Round Olympiad, 3

Given $n\ge 4$ real numbers $a_{n}>...>a_{1} > 0$. For $r > 0$, let $f_{n}(r)$ be the number of triples $(i,j,k)$ with $1\leq i<j<k\leq n$ such that $\frac{a_{j}-a_{i}}{a_{k}-a_{j}}=r$. Prove that ${f_{n}(r)}<\frac{n^{2}}{4}$.

2014 Junior Balkan Team Selection Tests - Romania, 4

Let $n \ge 6$ be an integer. We have at our disposal $n$ colors. We color each of the unit squares of an $n \times n$ board with one of the $n$ colors. a) Prove that, for any such coloring, there exists a path of a chess knight from the bottom-left to the upper-right corner, that does not use all the colors. b) Prove that, if we reduce the number of colors to $\lfloor 2n/3 \rfloor + 2$, then the statement from a) is true for infinitely many values of $n$ and it is false also for infinitely many values of $n$

2006 Cono Sur Olympiad, 5

Find all positive integer number $n$ such that $[\sqrt{n}]-2$ divides $n-4$ and $[\sqrt{n}]+2$ divides $n+4$. Note: $[r]$ denotes the integer part of $r$.

1988 China Team Selection Test, 4

Let $k \in \mathbb{N},$ $S_k = \{(a, b) | a, b = 1, 2, \ldots, k \}.$ Any two elements $(a, b)$, $(c, d)$ $\in S_k$ are called "undistinguishing" in $S_k$ if $a - c \equiv 0$ or $\pm 1 \pmod{k}$ and $b - d \equiv 0$ or $\pm 1 \pmod{k}$; otherwise, we call them "distinguishing". For example, $(1, 1)$ and $(2, 5)$ are undistinguishing in $S_5$. Considering the subset $A$ of $S_k$ such that the elements of $A$ are pairwise distinguishing. Let $r_k$ be the maximum possible number of elements of $A$. (i) Find $r_5$. (ii) Find $r_7$. (iii) Find $r_k$ for $k \in \mathbb{N}$.

2001 Junior Balkan Team Selection Tests - Moldova, 2

Solve in $R$ equation $[x] \cdot \{x\} = 2001 x$, where$ [ .]$ and $\{ .\}$ represent respectively the floor and the integer functions.

2008 AIME Problems, 11

Consider sequences that consist entirely of $ A$'s and $ B$'s and that have the property that every run of consecutive $ A$'s has even length, and every run of consecutive $ B$'s has odd length. Examples of such sequences are $ AA$, $ B$, and $ AABAA$, while $ BBAB$ is not such a sequence. How many such sequences have length 14?

PEN I Problems, 2

Prove that for any positive integer $n$, \[\left\lfloor \frac{n}{3}\right\rfloor+\left\lfloor \frac{n+2}{6}\right\rfloor+\left\lfloor \frac{n+4}{6}\right\rfloor = \left\lfloor \frac{n}{2}\right\rfloor+\left\lfloor \frac{n+3}{6}\right\rfloor .\]

2016 PUMaC Individual Finals B, 3

Let $m, k$, and $c$ be positive integers with $k > c$, and let $\lambda$ be a positive, non-integer real root of the equation $\lambda^{m+1} - k \lambda^m - c = 0$. Let $f : Z^+ \to Z$ be defined by $f(n) = \lfloor \lambda n \rfloor$ for all $n \in Z^+$. Show that $f^{m+1}(n) \equiv cn - 1$ (mod $k$) for all $n \in Z^+$. (Here, $Z^+$ denotes the set of positive integers, $ \lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$, and $f^{m+1}(n) = f(f(... f(n)...))$ where $f$ appears $m + 1$ times.)

PEN J Problems, 5

If $n$ is composite, prove that $\phi(n) \le n- \sqrt{n}$.

2010 AIME Problems, 8

For a real number $ a$, let $ \lfloor a \rfloor$ denominate the greatest integer less than or equal to $ a$. Let $ \mathcal{R}$ denote the region in the coordinate plane consisting of points $ (x,y)$ such that \[\lfloor x \rfloor ^2 \plus{} \lfloor y \rfloor ^2 \equal{} 25.\] The region $ \mathcal{R}$ is completely contained in a disk of radius $ r$ (a disk is the union of a circle and its interior). The minimum value of $ r$ can be written as $ \tfrac {\sqrt {m}}{n}$, where $ m$ and $ n$ are integers and $ m$ is not divisible by the square of any prime. Find $ m \plus{} n$.

2003 Denmark MO - Mohr Contest, 2

Within the real numbers, solve the equation $$x^5 + \lfloor x \rfloor = 20$$ where $\lfloor x \rfloor$ denotes the largest whole number less than or equal to $x$.

1979 IMO Longlists, 5

Describe which positive integers do not belong to the set \[E = \left\{ \lfloor n+ \sqrt n +\frac 12 \rfloor | n \in \mathbb N\right\}.\]

2007 Stanford Mathematics Tournament, 4

How many positive integers $n$, with $n\le 2007$, yield a solution for $x$ (where $x$ is real) in the equation $\lfloor x \rfloor+\lfloor 2x\rfloor+\lfloor 3x\rfloor=n$?

2008 Austria Beginners' Competition, 2

Determine all real numbers $x$ satisfying $$x \lfloor x \lfloor x \rfloor \rfloor =\sqrt2.$$

2006 Taiwan TST Round 1, 2

Let $p,q$ be two distinct odd primes. Calculate $\displaystyle \sum_{j=1}^{\frac{p-1}{2}}\left \lfloor \frac{qj}{p}\right \rfloor +\sum_{j=1}^{\frac{q-1}{2}}\left \lfloor \frac{pj}{q}\right\rfloor$.