This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2014 Contests, 2

Tags: algebra , function
Let $\mathbb{Z}$ be the set of integers. Find all functions $f : \mathbb{Z} \rightarrow \mathbb{Z}$ such that \[xf(2f(y)-x)+y^2f(2x-f(y))=\frac{f(x)^2}{x}+f(yf(y))\] for all $x, y \in \mathbb{Z}$ with $x \neq 0$.

2011 Philippine MO, 4

Tags: function , algebra
Find all (if there is one) functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for all $x\in\mathbb{R}$, \[f(f(x))+xf(x)=1.\]

2007 Grigore Moisil Intercounty, 4

Consider the group $ \{f:\mathbb{C}\setminus\mathbb{Q}\longrightarrow\mathbb{C}\setminus\mathbb{Q} | f\text{ is bijective}\} $ under the composition of functions. Find the order of the smallest subgroup of it that: $ \text{(1)} $ contains the function $ z\mapsto \frac{z-1}{z+1} . $ $ \text{(2)} $ contains the function $ z\mapsto \frac{z-3}{z+1} . $ $ \text{(3)} $ contain both of the above functions.

1946 Putnam, B3

In a solid sphere of radius $R$ the density $\rho$ is a function of $r$, the distance from the center of the sphere. If the magnitude of the gravitational force of attraction due to the sphere at any point inside the sphere is $k r^2$, where $k$ is a constant, find $\rho$ as a function of $r.$ Find also the magnitude of the force of attraction at a point outside the sphere at a distance $r$ from the center.

2004 AMC 12/AHSME, 17

Tags: function
Let $ f$ be a function with the following properties: (i) $f(1) \equal{} 1$, and (ii) $ f(2n) \equal{} n\times f(n)$, for any positive integer $ n$. What is the value of $ f(2^{100})$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2^{99} \qquad \textbf{(C)}\ 2^{100} \qquad \textbf{(D)}\ 2^{4950} \qquad \textbf{(E)}\ 2^{9999}$

1957 AMC 12/AHSME, 10

The graph of $ y \equal{} 2x^2 \plus{} 4x \plus{} 3$ has its: $ \textbf{(A)}\ \text{lowest point at } {(\minus{}1,9)}\qquad \textbf{(B)}\ \text{lowest point at } {(1,1)}\qquad \\ \textbf{(C)}\ \text{lowest point at } {(\minus{}1,1)}\qquad \textbf{(D)}\ \text{highest point at } {(\minus{}1,9)}\qquad \\ \textbf{(E)}\ \text{highest point at } {(\minus{}1,1)}$

2005 Taiwan TST Round 2, 1

Let $a,b$ be two constants within the open interval $(0,\frac{1}{2})$. Find all continous functions $f(x)$ such that \[f(f(x))=af(x)+bx\] holds for all real $x$. This is much harder than the problems we had in the 1st TST...

1993 USAMO, 4

Let $\, a,b \,$ be odd positive integers. Define the sequence $\, (f_n ) \,$ by putting $\, f_1 = a,$ $f_2 = b, \,$ and by letting $\, f_n \,$ for $\, n \geq 3 \,$ be the greatest odd divisor of $\, f_{n-1} + f_{n-2}$. Show that $\, f_n \,$ is constant for $\, n \,$ sufficiently large and determine the eventual value as a function of $\, a \,$ and $\, b$.

2007 Moldova National Olympiad, 12.4

If the function $f\colon [1,2]\to R$ is such that $\int_{1}^{2}f(x) dx=\frac{73}{24}$, then show that there exists a $x_{0}\in (1;2)$ such that \[x_{0}^{2}<f(x_{0})<x_{0}^{3}\] [Edit: $f$ is continuous]

2024 District Olympiad, P1

Tags: algebra , function
Let $a,b\in\mathbb{R},~a>1,~b>0.$ Find the least possible value for $\alpha$ such that :$$(a+b)^x\geq a^x+b,~(\forall)x\geq\alpha.$$

1991 Iran MO (2nd round), 3

Tags: algebra , function
Let $f : \mathbb R \to \mathbb R$ be a function such that $f(1)=1$ and \[f(x+y)=f(x)+f(y)\] And for all $x \in \mathbb R / \{0\}$ we have $f\left( \frac 1x \right) = \frac{1}{f(x)}.$ Find all such functions $f.$

2005 Alexandru Myller, 3

Let $f:[0,\infty)\to\mathbb R$ be a continuous function s.t. $\lim_{x\to\infty}\frac {f(x)}x=0$. Let $(x_n)_n$ be a sequence of positive real numbers s.t. $\left(\frac{x_n}n\right)_n$ is bounded. Prove that $\lim_{n\to\infty}\frac{f(x_n)}n=0$. [i]Dorin Andrica, Eugen Paltanea[/i]

2006 IMC, 4

Let f be a rational function (i.e. the quotient of two real polynomials) and suppose that $f(n)$ is an integer for infinitely many integers n. Prove that f is a polynomial.

1999 IMC, 6

(a) Let $p>1$ a real number. Find a real constant $c_p$ for which the following statement holds: If $f: [-1,1]\rightarrow\mathbb{R}$ is a continuously differentiable function with $f(1)>f(-1)$ and $|f'(y)|\le1 \forall y\in[-1,1]$, then $\exists x\in[-1,1]: f'(x)>0$ so that $\forall y\in[-1,1]: |f(y)-f(x)|\le c_p\sqrt[p]{f'(x)}|y-x|$. (b) What if $p=1$?

1970 Vietnam National Olympiad, 3

The function $f(x, y)$ is defined for all real numbers $x, y$. It satisfies $f(x,0) = ax$ (where $a$ is a non-zero constant) and if $(c, d)$ and $(h, k)$ are distinct points such that $f(c, d) = f(h, k)$, then $f(x, y)$ is constant on the line through $(c, d)$ and $(h, k)$. Show that for any real $b$, the set of points such that $f(x, y) = b$ is a straight line and that all such lines are parallel. Show that $f(x, y) = ax + by$, for some constant $b$.

1972 AMC 12/AHSME, 29

If $f(x)=\log \left(\frac{1+x}{1-x}\right)$ for $-1<x<1$, then $f\left(\frac{3x+x^3}{1+3x^2}\right)$ in terms of $f(x)$ is $\textbf{(A) }-f(x)\qquad\textbf{(B) }2f(x)\qquad\textbf{(C) }3f(x)\qquad$ $\textbf{(D) }\left[f(x)\right]^2\qquad \textbf{(E) }[f(x)]^3-f(x)$

1977 Miklós Schweitzer, 8

Let $ p \geq 1$ be a real number and $ \mathbb{R}_\plus{}\equal{}(0, \infty)$. For which continuous functions $ g : \mathbb{R}_\plus{} \rightarrow \mathbb{R}_\plus{}$ are following functions all convex? \[ M_n(x)\equal{}\left[ \frac{\sum_{i\equal{}1}^n g(\frac{x_i}{x_{i\plus{}1}}) x_{i\plus{}1}^p}{\sum_{i\equal{}1}^n g(\frac{x_i}{x_{i\plus{}1}})} \right ]^\frac 1p ,\] \[ x\equal{}(x_1,\ldots, x_{n\plus{}1}) \in \mathbb{R}_\plus{} ^ {n\plus{}1} , \; n\equal{}1,2,\ldots\] [i]L. Losonczi[/i]

2022 JHMT HS, 2

Suppose that $f$ is a differentiable function such that $f(0) = 20$ and $|f'(x)| \leq 4$ for all real numbers $x$. Let $a$ and $b$ be real numbers such that [i]every[/i] such function $f$ satisfies $a \leq f(22) \leq b$. Find the smallest possible value of $|a| + |b|$.

2013 Vietnam National Olympiad, 1

Tags: function , algebra
Find all $f:\mathbb{R}\rightarrow\mathbb{R}$ that satisfies $f(0)=0,f(1)=2013$ and \[(x-y)(f(f^2(x))-f(f^2(y)))=(f(x)-f(y))(f^2(x)-f^2(y))\] Note: $f^2(x)=(f(x))^2$

2008 Balkan MO, 2

Is there a sequence $ a_1,a_2,\ldots$ of positive reals satisfying simoultaneously the following inequalities for all positive integers $ n$: a) $ a_1\plus{}a_2\plus{}\ldots\plus{}a_n\le n^2$ b) $ \frac1{a_1}\plus{}\frac1{a_2}\plus{}\ldots\plus{}\frac1{a_n}\le2008$?

2005 Germany Team Selection Test, 3

Let ABC be a triangle and let $r, r_a, r_b, r_c$ denote the inradius and ex-radii opposite to the vertices $A, B, C$, respectively. Suppose that $a>r_a, b>r_b, c>r_c$. Prove that [b](a)[/b] $\triangle ABC$ is acute. [b](b)[/b] $a+b+c > r+r_a+r_b+r_c$.

2007 Miklós Schweitzer, 5

Let $D=\{ (x,y) \mid x>0, y\neq 0\}$ and let $u\in C^1(\overline {D})$ be a bounded function that is harmonic on $D$ and for which $u=0$ on the $y$-axis. Prove that $u$ is identically zero. (translated by Miklós Maróti)

1990 IMO Longlists, 93

Let $ {\mathbb Q}^ \plus{}$ be the set of positive rational numbers. Construct a function $ f : {\mathbb Q}^ \plus{} \rightarrow {\mathbb Q}^ \plus{}$ such that \[ f(xf(y)) \equal{} \frac {f(x)}{y} \] for all $ x$, $ y$ in $ {\mathbb Q}^ \plus{}$.

1991 AIME Problems, 6

Suppose $r$ is a real number for which \[ \left\lfloor r + \frac{19}{100} \right\rfloor + \left\lfloor r + \frac{20}{100} \right\rfloor + \left\lfloor r + \frac{21}{100} \right\rfloor + \cdots + \left\lfloor r + \frac{91}{100} \right\rfloor = 546. \] Find $\lfloor 100r \rfloor$. (For real $x$, $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$.)

2022 Estonia Team Selection Test, 1

Tags: function , algebra
Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ that satisfy the following condition for any real numbers $x{}$ and $y$ $$f(x)+f(x+y) \leq f(xy)+f(y).$$