This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

1989 Canada National Olympiad, 5

Tags: function
Given the numbers $ 1,2,2^2, \ldots ,2^{n\minus{}1}$, for a specific permutation $ \sigma \equal{} x_1,x_2, \ldots, x_n$ of these numbers we define $ S_1(\sigma) \equal{} x_1$, $ S_2(\sigma)\equal{}x_1\plus{}x_2$, $ \ldots$ and $ Q(\sigma)\equal{}S_1(\sigma)S_2(\sigma)\cdot \cdot \cdot S_n(\sigma)$. Evaluate $ \sum 1/Q(\sigma)$, where the sum is taken over all possible permutations.

2020 Miklós Schweitzer, 1

We say that two sequences $x,y \colon \mathbb{N} \to \mathbb{N}$ are [i]completely different[/i] if $x_n \neq y_n$ holds for all $n\in \mathbb{N}$. Let $F$ be a function assigning a natural number to every sequence of natural numbers such that $F(x)\neq F(y)$ for any pair of completely different sequences $x$, $y$, and for constant sequences we have $F \left((k,k,\dots)\right)=k$. Prove that there exists $n\in \mathbb{N}$ such that $F(x)=x_{n}$ for all sequences $x$.

PEN K Problems, 9

Find all functions $f: \mathbb{N}_{0}\rightarrow \mathbb{N}_{0}$ such that for all $n\in \mathbb{N}_{0}$: \[f(f(n))+f(n)=2n+6.\]

2012 ELMO Shortlist, 7

Let $f,g$ be polynomials with complex coefficients such that $\gcd(\deg f,\deg g)=1$. Suppose that there exist polynomials $P(x,y)$ and $Q(x,y)$ with complex coefficients such that $f(x)+g(y)=P(x,y)Q(x,y)$. Show that one of $P$ and $Q$ must be constant. [i]Victor Wang.[/i]

1996 North Macedonia National Olympiad, 2

Let $P$ be the set of all polygons in the plane and let $M : P \to R$ be a mapping that satisfies: (i) $M(P) \ge 0$ for each polygon $P$, (ii) $M(P) = x^2$ if $P$ is an equilateral triangle of side $x$, (iii) If a polygon $P$ is partitioned into polygons $S$ and $T$, then $M(P) = M(S)+ M(T)$, (iv) If polygons $P$ and $T$ are congruent, then $M(P) = M(T )$. Determine $M(P)$ if $P$ is a rectangle with edges $x$ and $y$.

2018 Romania National Olympiad, 2

Let $\mathcal{F}$ be the set of continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $$e^{f(x)}+f(x) \geq x+1, \: \forall x \in \mathbb{R}$$ For $f \in \mathcal{F},$ let $$I(f)=\int_0^ef(x) dx$$ Determine $\min_{f \in \mathcal{F}}I(f).$ [i]Liviu Vlaicu[/i]

1995 Iran MO (2nd round), 2

Let $n \geq 0$ be an integer. Prove that \[ \lceil \sqrt n +\sqrt{n+1}+\sqrt{n+2} \rceil = \lceil \sqrt{9n+8} \rceil\] Where $\lceil x \rceil $ is the smallest integer which is greater or equal to $x.$

1977 Miklós Schweitzer, 6

Let $ f$ be a real function defined on the positive half-axis for which $ f(xy)\equal{}xf(y)\plus{}yf(x)$ and $ f(x\plus{}1) \leq f(x)$ hold for every positive $ x$ and $ y$. Show that if $ f(1/2)\equal{}1/2$, then \[ f(x)\plus{}f(1\minus{}x) \geq \minus{}x \log_2 x \minus{}(1\minus{}x) \log_2 (1\minus{}x)\] for every $ x\in (0,1)$. [i]Z. Daroczy, Gy. Maksa[/i]

2012 Vietnam National Olympiad, 3

Tags: algebra , limit , function
Find all $f:\mathbb{R} \to \mathbb{R}$ such that: (a) For every real number $a$ there exist real number $b$:$f(b)=a$ (b) If $x>y$ then $f(x)>f(y)$ (c) $f(f(x))=f(x)+12x.$

2000 Moldova Team Selection Test, 3

For each positive integer $ n$, evaluate the sum \[ \sum_{k\equal{}0}^{2n}(\minus{}1)^{k}\frac{\binom{4n}{2k}}{\binom{2n}{k}}\]

2009 Germany Team Selection Test, 2

For every $ n\in\mathbb{N}$ let $ d(n)$ denote the number of (positive) divisors of $ n$. Find all functions $ f: \mathbb{N}\to\mathbb{N}$ with the following properties: [list][*] $ d\left(f(x)\right) \equal{} x$ for all $ x\in\mathbb{N}$. [*] $ f(xy)$ divides $ (x \minus{} 1)y^{xy \minus{} 1}f(x)$ for all $ x$, $ y\in\mathbb{N}$.[/list] [i]Proposed by Bruno Le Floch, France[/i]

2024 CCA Math Bonanza, I2

Tags: function
Let $S(x) = x+1$ and $V(x) = x^2-1$. Find the sum of the squares of all real solutions to $S(V(S(V(x)))) = 1$. [i]Individual #2[/i]

2014 Korea National Olympiad, 2

Determine all the functions $f : \mathbb{R}\rightarrow\mathbb{R}$ that satisfies the following. $f(xf(x)+f(x)f(y)+y-1)=f(xf(x)+xy)+y-1$

2008 Germany Team Selection Test, 3

Tags: function , algebra
Determine all functions $ f: \mathbb{R} \mapsto \mathbb{R}$ with $ x,y \in \mathbb{R}$ such that \[ f(x \minus{} f(y)) \equal{} f(x\plus{}y) \plus{} f(y)\]

2024 VJIMC, 4

Let $(b_n)_{n \ge 0}$ be a sequence of positive integers satisfying $b_n=d\left(\sum_{i=0}^{n-1} b_k\right)$ for all $n \ge 1$. (By $d(m)$ we denote the number of positive divisors of $m$.) a) Prove that $(b_n)_{n \ge 0}$ is unbounded. b) Prove that there are infinitely many $n$ such that $b_n>b_{n+1}$.

2006 Hong kong National Olympiad, 2

For a positive integer $k$, let $f_1(k)$ be the square of the sum of the digits of $k$. Define $f_{n+1}$ = $f_1 \circ f_n$ . Evaluate $f_{2007}(2^{2006} )$.

1993 IMO Shortlist, 5

Let $S$ be the set of all pairs $(m,n)$ of relatively prime positive integers $m,n$ with $n$ even and $m < n.$ For $s = (m,n) \in S$ write $n = 2^k \cdot n_o$ where $k, n_0$ are positive integers with $n_0$ odd and define \[ f(s) = (n_0, m + n - n_0). \] Prove that $f$ is a function from $S$ to $S$ and that for each $s = (m,n) \in S,$ there exists a positive integer $t \leq \frac{m+n+1}{4}$ such that \[ f^t(s) = s, \] where \[ f^t(s) = \underbrace{ (f \circ f \circ \cdots \circ f) }_{t \text{ times}}(s). \] If $m+n$ is a prime number which does not divide $2^k - 1$ for $k = 1,2, \ldots, m+n-2,$ prove that the smallest value $t$ which satisfies the above conditions is $\left [\frac{m+n+1}{4} \right ]$ where $\left[ x \right]$ denotes the greatest integer $\leq x.$

2021 Turkey Team Selection Test, 8

Let \(c\) be a real number. For all \(x\) and \(y\) real numbers we have, \[f(x-f(y))=f(x-y)+c(f(x)-f(y))\] and \(f(x)\) is not constant. \(a)\) Find all possible values of \(c\). \(b)\) Can \(f\) be periodic?

2023 CMIMC Team, 7

Compute the value of $$\sin^2\left(\frac{\pi}{7}\right) + \sin^2\left(\frac{3\pi}{7}\right) + \sin^2\left(\frac{5\pi}{7}\right).$$ Your answer should not involve any trigonometric functions. [i]Proposed by Howard Halim[/i]

MathLinks Contest 7th, 1.3

We are given the finite sets $ X$, $ A_1$, $ A_2$, $ \dots$, $ A_{n \minus{} 1}$ and the functions $ f_i: \ X\rightarrow A_i$. A vector $ (x_1,x_2,\dots,x_n)\in X^n$ is called [i]nice[/i], if $ f_i(x_i) \equal{} f_i(x_{i \plus{} 1})$, for each $ i \equal{} 1,2,\dots,n \minus{} 1$. Prove that the number of nice vectors is at least \[ \frac {|X|^n}{\prod\limits_{i \equal{} 1}^{n \minus{} 1} |A_i|}. \]

2018 Abels Math Contest (Norwegian MO) Final, 3b

Find all real functions $f$ defined on the real numbers except zero, satisfying $f(2019) = 1$ and $f(x)f(y)+ f\left(\frac{2019}{x}\right) f\left(\frac{2019}{y}\right) =2f(xy)$ for all $x,y \ne 0$

2008 Hong kong National Olympiad, 2

Let $ n>4$ be a positive integer such that $ n$ is composite (not a prime) and divides $ \varphi (n) \sigma (n) \plus{}1$, where $ \varphi (n)$ is the Euler's totient function of $ n$ and $ \sigma (n)$ is the sum of the positive divisors of $ n$. Prove that $ n$ has at least three distinct prime factors.

2018 Dutch IMO TST, 4

Let $A$ be a set of functions $f : R\to R$. For all $f_1, f_2 \in A$ there exists a $f_3 \in A$ such that $f_1(f_2(y) - x)+ 2x = f_3(x + y)$ for all $x, y \in R$. Prove that for all $f \in A$, we have $f(x - f(x))= 0$ for all $x \in R$.

2012 Today's Calculation Of Integral, 851

Let $T$ be a period of a function $f(x)=|\cos x|\sin x\ (-\infty,\ \infty).$ Find $\lim_{n\to\infty} \int_0^{nT} e^{-x}f(x)\ dx.$

2007 F = Ma, 2

The graph shows velocity as a function of time for a car. What was the acceleration at time = $90$ seconds? [asy] size(275); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); draw((0,0)--(6,0)); draw((0,1)--(6,1)); draw((0,2)--(6,2)); draw((0,3)--(6,3)); draw((0,4)--(6,4)); draw((0,0)--(0,4)); draw((1,0)--(1,4)); draw((2,0)--(2,4)); draw((3,0)--(3,4)); draw((4,0)--(4,4)); draw((5,0)--(5,4)); draw((6,0)--(6,4)); label("$0$",(0,0),S); label("$30$",(1,0),S); label("$60$",(2,0),S); label("$90$",(3,0),S); label("$120$",(4,0),S); label("$150$",(5,0),S); label("$180$",(6,0),S); label("$0$",(0,0),W); label("$10$",(0,1),W); label("$20$",(0,2),W); label("$30$",(0,3),W); label("$40$",(0,4),W); draw((0,0.6)--(0.1,0.55)--(0.8,0.55)--(1.2,0.65)--(1.9,1)--(2.2,1.2)--(3,2)--(4,3)--(4.45,3.4)--(4.5,3.5)--(4.75,3.7)--(5,3.7)--(5.5,3.45)--(6,3)); label("Time (s)", (7.5,0),S); label("Velocity (m/s)",(-1,3),W); [/asy] $ \textbf{(A)}\ 0.2\text{ m/s}^2\qquad\textbf{(B)}\ 0.33\text{ m/s}^2\qquad\textbf{(C)}\ 1.0\text{ m/s}^2\qquad\textbf{(D)}\ 9.8\text{ m/s}^2\qquad\textbf{(E)}\ 30\text{ m/s}^2 $