This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2019 Kosovo Team Selection Test, 2

Determine all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ such that for every $x,y \in \mathbb{R}$ $$f(x^{4}-y^{4})+4f(xy)^{2}=f(x^{4}+y^{4})$$

2024 AMC 12/AHSME, 20

Tags: geometry , function
Suppose $A$, $B$, and $C$ are points in the plane with $AB=40$ and $AC=42$, and let $x$ be the length of the line segment from $A$ to the midpoint of $\overline{BC}$. Define a function $f$ by letting $f(x)$ be the area of $\triangle ABC$. Then the domain of $f$ is an open interval $(p,q)$, and the maximum value $r$ of $f(x)$ occurs at $x=s$. What is $p+q+r+s$? $ \textbf{(A) }909\qquad \textbf{(B) }910\qquad \textbf{(C) }911\qquad \textbf{(D) }912\qquad \textbf{(E) }913\qquad $

2010 Today's Calculation Of Integral, 544

(1) Evaluate $ \int_{\minus{}\sqrt{3}}^{\sqrt{3}}( x^2\minus{}1)dx,\ \int_{\minus{}\sqrt{3}}^{\sqrt{3}} (x\minus{}1)^2dx,\ \int_{\minus{}\sqrt{3}}^{\sqrt{3}} (x\plus{}1)^2dx$. (2) If a linear function $ f(x)$ satifies $ \int_{\minus{}\sqrt{3}}^{\sqrt{3}} (x\minus{}1)f(x)dx\equal{}5\sqrt{3},\ \int_{\minus{}\sqrt{3}}^{\sqrt{3}} (x\plus{}1)f(x)dx\equal{}3\sqrt{3}$, then we have $ f(x)\equal{}\boxed{\ A\ }(x\minus{}1)\plus{}\boxed{\ B\ }(x\plus{}1)$, thus we have $ f(x)\equal{}\boxed{\ C\ }$.

2010 ISI B.Stat Entrance Exam, 4

A real valued function $f$ is defined on the interval $(-1,2)$. A point $x_0$ is said to be a fixed point of $f$ if $f(x_0)=x_0$. Suppose that $f$ is a differentiable function such that $f(0)>0$ and $f(1)=1$. Show that if $f'(1)>1$, then $f$ has a fixed point in the interval $(0,1)$.

2019 India IMO Training Camp, P2

Tags: function , algebra
Determine all functions $f:(0,\infty)\to\mathbb{R}$ satisfying $$\left(x+\frac{1}{x}\right)f(y)=f(xy)+f\left(\frac{y}{x}\right)$$ for all $x,y>0$.

2023 CMI B.Sc. Entrance Exam, 5

In whatever follows $f$ denotes a differentiable function from $\mathbb{R}$ to $\mathbb{R}$. $f \circ f$ denotes the composition of $f(x)$. $\textbf{(a)}$ If $f\circ f(x) = f(x) \forall x \in \mathbb{R}$ then for all $x$, $f'(x) =$ or $f'(f(x)) =$. Fill in the blank and justify. $\textbf{(b)}$Assume that the range of $f$ is of the form $ \left(-\infty , +\infty \right), [a, \infty ),(- \infty , b], [a, b] $. Show that if $f \circ f = f$, then the range of $f$ is $\mathbb{R}$. [hide=Hint](Hint: Consider a maximal element in the range of f)[/hide] $\textbf{(c)}$ If $g$ satisfies $g \circ g \circ g = g$, then $g$ is onto. Prove that $g$ is either strictly increasing or strictly decreasing. Furthermore show that if $g$ is strictly increasing, then $g$ is unique.

2024 Germany Team Selection Test, 1

Tags: function , algebra
Let $\mathbb{R}$ be the set of real numbers. Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function such that \[f(x+y)f(x-y)\geqslant f(x)^2-f(y)^2\] for every $x,y\in\mathbb{R}$. Assume that the inequality is strict for some $x_0,y_0\in\mathbb{R}$. Prove that either $f(x)\geqslant 0$ for every $x\in\mathbb{R}$ or $f(x)\leqslant 0$ for every $x\in\mathbb{R}$.

2018 Dutch IMO TST, 4

Let $A$ be a set of functions $f : R\to R$. For all $f_1, f_2 \in A$ there exists a $f_3 \in A$ such that $f_1(f_2(y) - x)+ 2x = f_3(x + y)$ for all $x, y \in R$. Prove that for all $f \in A$, we have $f(x - f(x))= 0$ for all $x \in R$.

2008 Balkan MO Shortlist, A2

Is there a sequence $ a_1,a_2,\ldots$ of positive reals satisfying simoultaneously the following inequalities for all positive integers $ n$: a) $ a_1\plus{}a_2\plus{}\ldots\plus{}a_n\le n^2$ b) $ \frac1{a_1}\plus{}\frac1{a_2}\plus{}\ldots\plus{}\frac1{a_n}\le2008$?

2014 Peru IMO TST, 1

a) Find at least two functions $f: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that $$\displaystyle{2f(x^2)\geq xf(x) + x,}$$ for all $x \in \mathbb{R}^+.$ b) Let $f: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ be a function such that $$\displaystyle{2f(x^2)\geq xf(x) + x,}$$ for all $x \in \mathbb{R}^+.$ Show that $ f(x^3)\geq x^2,$ for all $x \in \mathbb{R}^+.$ Can we find the best constant $a\in \Bbb{R}$ such that $f(x)\geq x^a,$ for all $x \in \mathbb{R}^+?$

2008 Miklós Schweitzer, 9

Tags: function
For a given $\alpha >0$ let us consider the regular, non-vanishing $f(z)$ maps on the unit disc $\{ |z|<1 \}$ for which $f(0)=1$ and $\mathrm{Re}\, z\frac{f'(z)}{f(z)}>-\alpha$ ($|z|<1$). Show that the range of $$g(z)=\frac{1}{(1-z)^{2\alpha}}$$ contains the range of all other such functions. Here we consider that regular branch of $g(z)$ for which $g(0)=1$. (translated by Miklós Maróti)

2017 Taiwan TST Round 3, 1

Let $\{a_n\}_{n\geq 0}$ be an arithmetic sequence with difference $d$ and $1\leq a_0\leq d$. Denote the sequence as $S_0$, and define $S_n$ recursively by two operations below: Step $1$: Denote the first number of $S_n$ as $b_n$, and remove $b_n$. Step $2$: Add $1$ to the first $b_n$ numbers to get $S_{n+1}$. Prove that there exists a constant $c$ such that $b_n=[ca_n]$ for all $n\geq 0$, where $[]$ is the floor function.

2006 Pre-Preparation Course Examination, 2

Tags: algebra , function
Show that there exists a continuos function $f: [0,1]\rightarrow [0,1]$ such that it has no periodic orbit of order $3$ but it has a periodic orbit of order $5$.

2011 Today's Calculation Of Integral, 715

Find the differentiable function $f(x)$ with $f(0)\neq 0$ satisfying $f(x+y)=f(x)f'(y)+f'(x)f(y)$ for all real numbers $x,\ y$.

2015 India IMO Training Camp, 2

Find all functions from $\mathbb{N}\cup\{0\}\to\mathbb{N}\cup\{0\}$ such that $f(m^2+mf(n))=mf(m+n)$, for all $m,n\in \mathbb{N}\cup\{0\}$.

2021-IMOC, A8

Find all functions $f : \mathbb{N} \to \mathbb{N}$ with $$f(x) + yf(f(x)) < x(1 + f(y)) + 2021$$ holds for all positive integers $x,y.$

2013 Princeton University Math Competition, 1

Prove that \[ \frac{1}{a^2+2} + \frac{1}{b^2+2} + \frac{1}{c^2+2} \le \frac{1}{6ab+c^2} + \frac{1}{6bc+a^2} + \frac{1}{6ca+b^2} \] for all positive real numbers $a$, $b$ and $c$ satisfying $a^2+b^2+c^2=1$.

2008 Bulgaria Team Selection Test, 3

Tags: function , algebra
Let $\mathbb{R}^{+}$ be the set of positive real numbers. Find all real numbers $a$ for which there exists a function $f :\mathbb{R}^{+} \to \mathbb{R}^{+}$ such that $3(f(x))^{2}=2f(f(x))+ax^{4}$, for all $x \in \mathbb{R}^{+}$.

1996 Romania National Olympiad, 1

Let $I \subset \mathbb{R}$ be a nondegenerate interval and $f:I \to \mathbb{R}$ a differentiable function. We denote $J= \left\{ \frac{f(b)-f(a)}{b-a} : a,b \in I, a<b \right\}.$ Prove that: $a)$ $J$ is an interval; $b)$ $J \subset f'(I),$ and the set $f'(I) \setminus J$ contains at most two elements; $c)$ Using parts $a)$ and $b),$ deduce that $f'$ has the intermediate value property.

2010 Rioplatense Mathematical Olympiad, Level 3, 3

Tags: function , algebra , domain
Find all the functions $f:\mathbb{N}\to\mathbb{R}$ that satisfy \[ f(x+y)=f(x)+f(y) \] for all $x,y\in\mathbb{N}$ satisfying $10^6-\frac{1}{10^6} < \frac{x}{y} < 10^6+\frac{1}{10^6}$. Note: $\mathbb{N}$ denotes the set of positive integers and $\mathbb{R}$ denotes the set of real numbers.

2019 Belarusian National Olympiad, 9.3

Positive real numbers $a$ and $b$ satisfy the following conditions: the function $f(x)=x^3+ax^2+2bx-1$ has three different real roots, while the function $g(x)=2x^2+2bx+a$ doesn't have real roots. Prove that $a-b>1$. [i](V. Karamzin)[/i]

2010 Paenza, 4

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the following property: for all $\alpha \in \mathbb{R}_{>0}$, the sequence $(a_n)_{n \in \mathbb{N}}$ defined as $a_n = f(n\alpha)$ satisfies $\lim_{n \to \infty} a_n = 0$. Is it necessarily true that $\lim_{x \to +\infty} f(x) = 0$?

2007 Moldova National Olympiad, 12.6

Show that the distance between a point on the hyperbola $xy=5$ and a point on the ellipse $x^{2}+6y^{2}=6$ is at least $\frac{9}{7}$.

2011 Abels Math Contest (Norwegian MO), 4a

In a town there are $n$ avenues running from south to north. They are numbered $1$ through $n$ (from west to east). There are $n$ streets running from west to east – they are also numbered $1$ through $n$ (from south to north). If you drive through the junction of the $k$th avenue and the $\ell$th street, you have to pay $k\ell$ kroner. How much do you at least have to pay for driving from the junction of the $1$st avenue and the $1$st street to the junction of the nth avenue and the $n$th street? (You also pay for the starting and finishing junctions.)

2014 ELMO Shortlist, 5

Tags: function , algebra
Let $\mathbb R^\ast$ denote the set of nonzero reals. Find all functions $f: \mathbb R^\ast \to \mathbb R^\ast$ satisfying \[ f(x^2+y)+1=f(x^2+1)+\frac{f(xy)}{f(x)} \] for all $x,y \in \mathbb R^\ast$ with $x^2+y\neq 0$. [i]Proposed by Ryan Alweiss[/i]