This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2003 Turkey MO (2nd round), 3

Let $ f: \mathbb R \rightarrow \mathbb R$ be a function such that $ f(tx_1\plus{}(1\minus{}t)x_2)\leq tf(x_1)\plus{}(1\minus{}t)f(x_2)$ for all $ x_1 , x_2 \in \mathbb R$ and $ t\in (0,1)$. Show that $ \sum_{k\equal{}1}^{2003}f(a_{k\plus{}1})a_k \geq \sum_{k\equal{}1}^{2003}f(a_k)a_{k\plus{}1}$ for all real numbers $ a_1,a_2,...,a_{2004}$ such that $ a_1\geq a_2\geq ... \geq a_{2003}$ and $ a_{2004}\equal{}a_1$

2022 Romania National Olympiad, P1

Tags: calculus , function
Let $f:[0,1]\to(0,1)$ be a surjective function. [list=a] [*]Prove that $f$ has at least one point of discontinuity. [*]Given that $f$ admits a limit in any point of the interval $[0,1],$ show that is has at least two points of discontinuity. [/list][i]Mihai Piticari and Sorin Rădulescu[/i]

2019 District Olympiad, 1

Find the functions $f: \mathbb{R} \to (0, \infty)$ which satisfy $$2^{-x-y} \le \frac{f(x)f(y)}{(x^2+1)(y^2+1)} \le \frac{f(x+y)}{(x+y)^2+1},$$ for all $x,y \in \mathbb{R}.$

2006 Pre-Preparation Course Examination, 3

Show that if $f: [0,1]\rightarrow [0,1]$ is a continous function and it has topological transitivity then periodic points of $f$ are dense in $[0,1]$. Topological transitivity means there for every open sets $U$ and $V$ there is $n>0$ such that $f^n(U)\cap V\neq \emptyset$.

2012 Gulf Math Olympiad, 3

Consider a $3\times7$ grid of squares. Each square may be coloured green or white. [list] (a) Is it possible to find a colouring so that no subrectangle has all four corner squares of the same colour? (b) Is it possible for a $4\times 6$ grid? [/list] [i]Subrectangles must have their corners at grid-points of the original diagram. The corner squares of a subrectangle must be different. The original diagram is a subrectangle of itself.[/i]

2021 Korea Winter Program Practice Test, 2

Tags: function , algebra
Find all functions $f:R^+\rightarrow R^+$ such that for all positive reals $x$ and $y$ $$4f(x+yf(x))=f(x)f(2y)$$

2009 Ukraine National Mathematical Olympiad, 2

Find all functions $f : \mathbb Z \to \mathbb Z$ such that \[f (n |m|) + f (n(|m| +2)) = 2f (n(|m| +1)) \qquad \forall m,n \in \mathbb Z.\] [b]Note.[/b] $|x|$ denotes the absolute value of the integer $x.$

2012 Romania National Olympiad, 3

[color=darkred]Let $a,b\in\mathbb{R}$ with $0<a<b$ . Prove that: [list] [b]a)[/b] $2\sqrt {ab}\le\frac {x+y+z}3+\frac {ab}{\sqrt[3]{xyz}}\le a+b$ , for $x,y,z\in [a,b]\, .$ [b]b)[/b] $\left\{\frac {x+y+z}3+\frac {ab}{\sqrt[3]{xyz}}\, |\, x,y,z\in [a,b]\right\}=[2\sqrt {ab},a+b]\, .$ [/list][/color]

2000 Harvard-MIT Mathematics Tournament, 35

Tags: function
If $1+2x+3x^2 +...=9$, find $x$.

2021-IMOC qualification, A3

Find all injective function $f: N \to N$ satisfying that for all positive integers $m,n$, we have: $f(n(f(m)) \le nm$

2016 Korea USCM, 7

$M$ is a postive real and $f:[0,\infty)\to[0,M]$ is a continuous function such that $$\int_0^\infty (1+x)f(x) dx<\infty$$ Then, prove the following inequality. $$\left(\int_0^\infty f(x) dx \right)^2 \leq 4M \int_0^\infty x f(x) dx$$ (@below, Thank you. I fixed.)

1986 National High School Mathematics League, 1

Let $-1<a<0$, $\theta=\arcsin a$. Then the solution set to the inequality $\sin x<a$ is $\text{(A)}\{x|2n\pi+\theta<x<(2n+1)\pi-\theta,n\in\mathbb{Z}\}$ $\text{(B)}\{x|2n\pi-\theta<x<(2n+1)\pi+\theta,n\in\mathbb{Z}\}$ $\text{(C)}\{x|(2n-1)\pi+\theta<x<2n\pi-\theta,n\in\mathbb{Z}\}$ $\text{(D)}\{x|(2n-1)\pi-\theta<x<2n\pi+\theta,n\in\mathbb{Z}\}$

1951 AMC 12/AHSME, 34

The value of $ 10^{\log_{10}7}$ is: $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ \log_{10} 7 \qquad\textbf{(E)}\ \log_7 10$

1996 Poland - Second Round, 3

$a,b,c \geq-3/4$ and $a+b+c=1$. Show that: $\frac{a}{1+a^{2}}+\frac{b}{1+b^{2}}+\frac{c}{1+c^{2}}\leq \frac{9}{10}$

Today's calculation of integrals, 769

In $xyz$ space, find the volume of the solid expressed by $x^2+y^2\leq z\le \sqrt{3}y+1.$

2009 Harvard-MIT Mathematics Tournament, 3

Compute $e^A$ where $A$ is defined as \[\int_{3/4}^{4/3}\dfrac{2x^2+x+1}{x^3+x^2+x+1}dx.\]

2002 USA Team Selection Test, 1

Let $ ABC$ be a triangle, and $ A$, $ B$, $ C$ its angles. Prove that \[ \sin\frac{3A}{2}+\sin\frac{3B}{2}+\sin\frac{3C}{2}\leq \cos\frac{A-B}{2}+\cos\frac{B-C}{2}+\cos\frac{C-A}{2}. \]

2011 USA Team Selection Test, 3

Let $p$ be a prime. We say that a sequence of integers $\{z_n\}_{n=0}^\infty$ is a [i]$p$-pod[/i] if for each $e \geq 0$, there is an $N \geq 0$ such that whenever $m \geq N$, $p^e$ divides the sum \[\sum_{k=0}^m (-1)^k {m \choose k} z_k.\] Prove that if both sequences $\{x_n\}_{n=0}^\infty$ and $\{y_n\}_{n=0}^\infty$ are $p$-pods, then the sequence $\{x_ny_n\}_{n=0}^\infty$ is a $p$-pod.

2005 Today's Calculation Of Integral, 73

Find the minimum value of $\int_0^{\pi} (a\sin x+b\sin 2x+c\sin 3x-x)^2\ dx$

2001 IMC, 6

Suppose that the differentiable functions $a, b, f, g:\mathbb{R} \rightarrow \mathbb{R} $ satisfy \[ f(x)\geq 0, f'(x) \geq 0,g(x)\geq 0, g'(x) \geq 0 \text{ for all } x \in \mathbb{R}, \] \[\lim_{x\rightarrow \infty} a(x)=A\geq 0,\lim_{x\rightarrow \infty} b(x)=B\geq 0, \lim_{x\rightarrow \infty} f(x)=\lim_{x\rightarrow \infty} g(x)=\infty,\] and \[\frac{f'(x)}{g'(x)}+a(x)\frac{f(x)}{g(x)}=b(x).\] Prove that $\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}=\frac{B}{A+1}$.

2010 AMC 12/AHSME, 22

What is the minimum value of $ f(x) \equal{} |x \minus{} 1| \plus{} |2x \minus{} 1| \plus{} |3x \minus{} 1| \plus{} \cdots \plus{} |119x \minus{} 1|$? $ \textbf{(A)}\ 49 \qquad \textbf{(B)}\ 50 \qquad \textbf{(C)}\ 51 \qquad \textbf{(D)}\ 52 \qquad \textbf{(E)}\ 53$

2007 Gheorghe Vranceanu, 3

Let be a function $ s:\mathbb{N}^2\longrightarrow \mathbb{N} $ that sends $ (m,n) $ to the number of solutions in $ \mathbb{N}^n $ of the equation: $$ x_1+x_2+\cdots +x_n=m $$ [b]1)[/b] Prove that: $$ s(m+1,n+1)=s(m,n)+s(m,n+1) =\prod_{r=1}^n\frac{m-r+1}{r} ,\quad\forall m,n\in\mathbb{N} $$ [b]2)[/b] Find $ \max\left\{ a_1a_2\cdots a_{20}\bigg| a_1+a_2+\cdots +a_{20}=2007, a_1,a_2,\ldots a_{20}\in\mathbb{N} \right\} . $

2006 China Team Selection Test, 3

$d$ and $n$ are positive integers such that $d \mid n$. The n-number sets $(x_1, x_2, \cdots x_n)$ satisfy the following condition: (1) $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq n$ (2) $d \mid (x_1+x_2+ \cdots x_n)$ Prove that in all the n-number sets that meet the conditions, there are exactly half satisfy $x_n=n$.

2015 Iran MO (3rd round), 5

Find all polynomials $p(x)\in\mathbb{R}[x]$ such that for all $x\in \mathbb{R}$: $p(5x)^2-3=p(5x^2+1)$ such that: $a) p(0)\neq 0$ $b) p(0)=0$

2014 Taiwan TST Round 2, 2

Determine all functions $f: \mathbb{Q} \rightarrow \mathbb{Z} $ satisfying \[ f \left( \frac{f(x)+a} {b}\right) = f \left( \frac{x+a}{b} \right) \] for all $x \in \mathbb{Q}$, $a \in \mathbb{Z}$, and $b \in \mathbb{Z}_{>0}$. (Here, $\mathbb{Z}_{>0}$ denotes the set of positive integers.)