This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 649

2016 China Team Selection Test, 2

Find the smallest positive number $\lambda$, such that for any $12$ points on the plane $P_1,P_2,\ldots,P_{12}$(can overlap), if the distance between any two of them does not exceed $1$, then $\sum_{1\le i<j\le 12} |P_iP_j|^2\le \lambda$.

1904 Eotvos Mathematical Competition, 3

Let $A_1A_2$ and $B_1B_2$ be the diagonals of a rectangle, and let $O$ be its center. Find and construct the set of all points $P$ that satisfy simultaneously the four inequaliies: $$A_1P > OP , \\A_2P > OP, \ \ B_1P > OP , \ \ B_2P > OP.$$

2000 All-Russian Olympiad Regional Round, 11.2

The height and radius of the base of the cylinder are equal to $1$. What is the smallest number of balls of radius $1$ that can cover the entire cylinder?

2013 HMNT, 5

Let $ABC$ be a triangle with $AB = 13$, $BC = 14$, $CA = 15$. Company $XYZ$ wants to locate their base at the point $P$ in the plane minimizing the total distance to their workers, who are located at vertices $A$, $B$, and $C$. There are $1$, $5$, and $4$ workers at $A$, $B$, and $C$, respectively. Find the minimum possible total distance Company $XYZ$'s workers have to travel to get to $P$.

2013 Hanoi Open Mathematics Competitions, 6

Let $ABC$ be a triangle with area $1$ (cm$^2$). Points $D,E$ and $F$ lie on the sides $AB, BC$ and CA, respectively. Prove that $min\{$area of $\vartriangle ADF,$ area of $\vartriangle BED,$ area of $\vartriangle CEF\} \le \frac14$ (cm$^2$).

1966 IMO Longlists, 63

Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points in the interiors of the sides $ BC$, $ CA$, $ AB$ of this triangle. Prove that the area of at least one of the three triangles $ AQR$, $ BRP$, $ CPQ$ is less than or equal to one quarter of the area of triangle $ ABC$. [i]Alternative formulation:[/i] Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points on the segments $ BC$, $ CA$, $ AB$, respectively. Prove that $ \min\left\{\left|AQR\right|,\left|BRP\right|,\left|CPQ\right|\right\}\leq\frac14\cdot\left|ABC\right|$, where the abbreviation $ \left|P_1P_2P_3\right|$ denotes the (non-directed) area of an arbitrary triangle $ P_1P_2P_3$.

2009 Bundeswettbewerb Mathematik, 3

Given a triangle $ABC$ and a point $P$ on the side $AB$ . Let $Q$ be the intersection of the straight line $CP$ (different from $C$) with the circumcicle of the triangle. Prove the inequality $$\frac{\overline{PQ}}{\overline{CQ}} \le \left(\frac{\overline{AB}}{\overline{AC}+\overline{CB}}\right)^2$$ and that equality holds if and only if the $CP$ is bisector of the angle $ACB$. [img]https://cdn.artofproblemsolving.com/attachments/b/1/068fafd5564e77930160115a1cd409c4fdbf61.png[/img]

2020 Kyiv Mathematical Festival, 2

Mummy-trolley huts are located on a straight line at points with coordinates $x_1, x_2,...., x_n$. In this village are going to build $3$ stores $A, B$ and $C$, of which will be brought every day to all Moomin-trolls chocolates, bread and water. For the delivery of chocolate, the store takes the distance from the store to the hut, raised to the square; for bread delivery , take the distance from the store to the hut; for water delivery take distance $1$, if the distance is greater than $1$ km, but do not take anything otherwise. a) Where to build each of the stores so that the total cost of all Moomin-trolls for delivery wasthe smallest? b) Where to place the TV tower, if the fee for each Moomin-troll is the maximum distance from the TV tower to the farthest hut from it? c) How will the answer change if the Moomin-troll huts are not located in a straight line, and on the plane? [hide=original wording] На прямiй розташованi хатинки Мумi-тролей в точках з координатами x1, x2, . . . , xn. В цьому селi бираються побудувати 3 магазина A, B та C, з яких будуть кожен день привозити всiм Мумi-тролям шоколадки, хлiб та воду. За доставку шоколадки мага- зин бере вiдстань вiд магазину до хатинки, пiднесену до квадрату; за доставку хлiба – вiдстань вiд магазину до хатинки; за доставку води беруть 1, якщо вiдстань бiльша 1 км, та нiчого не беруть в супротивному випадку. 1. Де побудувати кожний з магазинiв, щоб загальнi витрати всiх Мумi-тролей на доставку були найменшими? 2. Де розташувати телевежу, якщо плата для кожного Мумi-троля – максимальна вiдстань вiд телевежi до самої вiддаленої вiд неї хатинки? 3. Як змiниться вiдповiдь, якщо хатинки Мумi-тролей розташованi не на прямiй, а на площинi?[/hide]

2001 All-Russian Olympiad Regional Round, 11.7

There is an infinite set of points $S$ on the plane, and any $1\times 1$ square contains a finite number of points from the set $S$. Prove that there are two different points $A$ and $B$ from $S$ such that for any other point $X$ from $S$ the following inequalities hold: $$|XA|, |XB| \ge 0.999|AB|.$$

1972 Poland - Second Round, 3

The coordinates of the triangle's vertices in the Cartesian system $XOY$ are integers. Prove that the diameter of the circle circumscribed by this triangle is not greater than the product of the lengths of the triangle's sides.

Kyiv City MO Juniors 2003+ geometry, 2012.7.4

Given an isosceles triangle $ABC$ with a vertex at the point $B$. Based on $AC$, an arbitrary point $D $ is selected, different from the vertices $A$ and $C $. On the line $AC $ select the point $E $ outside the segment $AC$, for which $AE = CD$. Prove that the perimeter $\Delta BDE$ is larger than the perimeter $\Delta ABC$.

2016 Indonesia TST, 2

Given a convex polygon with $n$ sides and perimeter $S$, which has an incircle $\omega$ with radius $R$. A regular polygon with $n$ sides, whose vertices lie on $\omega$, has a perimeter $s$. Determine whether the following inequality holds: \[ S \ge \frac{2sRn}{\sqrt{4n^2R^2-s^2}}. \]

Geometry Mathley 2011-12, 2.1

Let $ABC$ be an equilateral triangle with circumcircle of center $O$ and radius $R$. Point $M$ is exterior to the triangle such that $S_bS_c = S_aS_b+S_aS_c$, where $S_a, S_b, S_c$ are the areas of triangles $MBC,MCA,MAB$ respectively. Prove that $OM \ge R$. Nguyễn Tiến Lâm

IV Soros Olympiad 1997 - 98 (Russia), 10.11

A plane intersecting a unit cube divides it into two polyhedra. It is known that for each polyhedron the distance between any two points of it does not exceeds $\frac32$ m. What can be the cross-sectional area of a cube drawn by a plane?

1981 Spain Mathematical Olympiad, 2

A cylindrical glass beaker is $8$ cm high and its circumference rim is $12$ cm wide . Inside, $3$ cm from the edge, there is a tiny drop of honey. In a point on its outer surface, belonging to the plane passing through the axis of the cylinder and for the drop of honey, and located $1$ cm from the base (or bottom) of the glass, there is a fly. What is the shortest path that the fly must travel, walking on the surface from the glass, to the drop of honey, and how long is said path? [hide=original wording]Un vaso de vidrio cil´ındrico tiene 8 cm de altura y su borde 12 cm de circunferencia. En su interior, a 3 cm del borde, hay una diminuta gota de miel. En un punto de su superficie exterior, perteneciente al plano que pasa por el eje del cilindro y por la gota de miel, y situado a 1 cm de la base (o fondo) del vaso, hay una mosca. ¿Cu´al es el camino m´as corto que la mosca debe recorrer, andando sobre la superficie del vaso, hasta la gota de miel, y qu´e longitud tiene dicho camino?[/hide]

2022 Swedish Mathematical Competition, 4

Let $ABC$ be an acute triangle. Let $I$ be a point inside the triangle and let $D$ be a point on the line $AB$. The line through $D$ which is parallel to $AI$ intersects the line $AC$ at the point $E$, and the line through $D$ parallel to $BI$ intersects the line $BC$ in point $F$. prove that $$\frac{EF \cdot CI}{2} \ge area (\vartriangle ABC) $$

Estonia Open Senior - geometry, 2017.1.5

On the sides $BC, CA$ and $AB$ of triangle $ABC$, respectively, points $D, E$ and $F$ are chosen. Prove that $\frac12 (BC + CA + AB)<AD + BE + CF<\frac 32 (BC + CA + AB)$.

1983 IMO Shortlist, 17

Let $P_1, P_2, \dots , P_n$ be distinct points of the plane, $n \geq 2$. Prove that \[ \max_{1\leq i<j\leq n} P_iP_j > \frac{\sqrt 3}{2}(\sqrt n -1) \min_{1\leq i<j\leq n} P_iP_j \]

Denmark (Mohr) - geometry, 1992.4

Let $a, b$ and $c$ denote the side lengths and $m_a, m_b$ and $m_c$ of the median's lengths in an arbitrary triangle. Show that $$\frac34 < \frac{m_a + m_b + m_c}{a + b + c}<1$$ Also show that there is no narrower range that for each triangle that contains the fraction $$\frac{m_a + m_b + m_c}{a + b + c}$$

2003 Romania National Olympiad, 1

Let be a tetahedron $ OABC $ with $ OA\perp OB\perp OC\perp OA. $ Show that $$ OH\le r\left( 1+\sqrt 3 \right) , $$ where $ H $ is the orthocenter of $ ABC $ and $ r $ is radius of the inscribed spere of $ OABC. $ [i]Valentin Vornicu[/i]

Kvant 2020, M2596

The circle $\omega{}$ is inscribed in the quadrilateral $ABCD$. Prove that the diameter of the circle $\omega{}$ does not exceed the length of the segment connecting the midpoints of the sides $BC$ and $AD$. [i]Proposed by O. Yuzhakov[/i]

MIPT student olimpiad autumn 2024, 4

The ellipsoid $E$ is contained in the simplex $S$, which is located in the unit ball B space $R^n$. Prove that the sum of the principal semi-axes of the ellipsoid $E$ is no more than units.

1997 Spain Mathematical Olympiad, 5

Prove that in every convex quadrilateral of area $1$, the sum of the lengths of the sides and diagonals is not smaller than $2(2+\sqrt2)$.

2016 Romania National Olympiad, 3

If $a, b$ and $c$ are the length of the sides of a triangle, show that $$\frac32 \le \frac{b + c}{b + c + 2a}+ \frac{a + c}{a + c + 2b}+ \frac{a + b}{a + b + 2c}\le \frac53.$$

2010 Belarus Team Selection Test, 5.2

Numbers $a, b, c$ are the length of the medians of some triangle. If $ab + bc + ac = 1$ prove that a) $a^2b + b^2c + c^2a > \frac13$ b) $a^2b + b^2c + c^2a > \frac12$ (I. Bliznets)