This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 649

2024 Moldova EGMO TST, 5

$AD$ Is the angle bisector Of $\angle BAC$ Where $D$ lies on the The circumcircle of $\triangle ABC$. Show that $2AD>AB+AC$

1989 French Mathematical Olympiad, Problem 3

Find the greatest real $k$ such that, for every tetrahedron $ABCD$ of volume $V$, the product of areas of faces $ABC,ABD$ and $ACD$ is at least $kV^2$.

2021 Thailand TST, 2

In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\] (A disk is assumed to contain its boundary.)

2004 Croatia National Olympiad, Problem 2

If $a,b,c$ are the sides and $\alpha,\beta,\gamma$ the corresponding angles of a triangle, prove the inequality $$\frac{\cos\alpha}{a^3}+\frac{\cos\beta}{b^3}+\frac{\cos\gamma}{c^3}\ge\frac3{2abc}.$$

1962 German National Olympiad, 4

A convex flat quadrilateral is given. Prove that for the ratio $q$ of the largest to the smallest of all distances, for any two vertices: $q \ge \sqrt2$. [hide=original wording]Gegeben sei ein konvexes ebenes Viereck. Es ist zu beweisen, dass fur den Quotienten q aus dem großten und dem kleinsten aller Abstande zweier beliebiger Eckpunkte voneinander stets gilt: q >= \sqrt2.[/hide]

2008 IMAC Arhimede, 2

In the $ ABC$ triangle, the bisector of $A $ intersects the $ [BC] $ at the point $ A_ {1} $ , and the circle circumscribed to the triangle $ ABC $ at the point $ A_ {2} $. Similarly are defined $ B_ {1} $ and $ B_ {2} $ , as well as $ C_ {1} $ and $ C_ {2} $. Prove that $$ \frac {A_{1}A_{2}}{BA_{2} + A_{2}C} + \frac {B_{1}B_{2}}{CB_{2} + B_{2}A} + \frac {C_{1}C_{2}}{AC_{2} + C_{2}B} \geq \frac {3}{4}$$

1989 IMO Longlists, 87

Consider in a plane $ P$ the points $ O,A_1,A_2,A_3,A_4$ such that \[ \sigma(OA_iA_j) \geq 1 \quad \forall i, j \equal{} 1, 2, 3, 4, i \neq j.\] where $ \sigma(OA_iA_j)$ is the area of triangle $ OA_iA_j.$ Prove that there exists at least one pair $ i_0, j_0 \in \{1, 2, 3, 4\}$ such that \[ \sigma(OA_iA_j) \geq \sqrt{2}.\]

1993 Tournament Of Towns, (393) 1

Two tangents $CA$ and $CB$ are drawn to a circle ($A$ and $B$ being the tangent points). Consider a “triangle” bounded by an arc $AB$ (the smaller one) and segments $CA$ and $CB$. Prove that the length of any segment inside the triangle is not greater than the length of $CA = CB$. (Folklore)

1989 IMO Longlists, 40

Let $ ABCD$ be a convex quadrilateral such that the sides $ AB, AD, BC$ satisfy $ AB \equal{} AD \plus{} BC.$ There exists a point $ P$ inside the quadrilateral at a distance $ h$ from the line $ CD$ such that $ AP \equal{} h \plus{} AD$ and $ BP \equal{} h \plus{} BC.$ Show that: \[ \frac {1}{\sqrt {h}} \geq \frac {1}{\sqrt {AD}} \plus{} \frac {1}{\sqrt {BC}} \]

1988 Czech And Slovak Olympiad IIIA, 3

Given a tetrahedron $ABCD$ with edges $|AD|=|BC|= a$, $|AC|=|BD|=b$, $AB=c$ and $|CD| = d$. Determine the smallest value of the sum $|AX|+|BX|+|CX|+|DX|$, where $X$ is any point in space.

2002 IMO, 6

Let $n\geq3$ be a positive integer. Let $C_1,C_2,C_3,\ldots,C_n$ be unit circles in the plane, with centres $O_1,O_2,O_3,\ldots,O_n$ respectively. If no line meets more than two of the circles, prove that \[ \sum\limits^{}_{1\leq i<j\leq n}{1\over O_iO_j}\leq{(n-1)\pi\over 4}. \]

2014 Turkey MO (2nd round), 3

Let $D, E, F$ be points on the sides $BC, CA, AB$ of a triangle $ABC$, respectively such that the lines $AD, BE, CF$ are concurrent at the point $P$. Let a line $\ell$ through $A$ intersect the rays $[DE$ and $[DF$ at the points $Q$ and $R$, respectively. Let $M$ and $N$ be points on the rays $[DB$ and $[DC$, respectively such that the equation \[ \frac{QN^2}{DN}+\frac{RM^2}{DM}=\frac{(DQ+DR)^2-2\cdot RQ^2+2\cdot DM\cdot DN}{MN} \] holds. Show that the lines $AD$ and $BC$ are perpendicular to each other.

2022 Chile Junior Math Olympiad, 5

In a right circular cone of wood, the radius of the circumference $T$ of the base circle measures $10$ cm, while every point on said circumference is $20$ cm away. from the apex of the cone. A red ant and a termite are located at antipodal points of $T$. A black ant is located at the midpoint of the segment that joins the vertex with the position of the termite. If the red ant moves to the black ant's position by the shortest possible path, how far does it travel?

1966 IMO Shortlist, 38

Two concentric circles have radii $R$ and $r$ respectively. Determine the greatest possible number of circles that are tangent to both these circles and mutually nonintersecting. Prove that this number lies between $\frac 32 \cdot \frac{\sqrt R +\sqrt r }{\sqrt R -\sqrt r } -1$ and $\frac{63}{20} \cdot \frac{R+r}{R-r}.$

2021 Sharygin Geometry Olympiad, 9.2

A cyclic pentagon is given. Prove that the ratio of its area to the sum of the diagonals is not greater than the quarter of the circumradius.

2010 Bundeswettbewerb Mathematik, 1

Let $a, b, c$ be the side lengths of an non-degenerate triangle with $a \le b \le c$. With $t (a, b, c)$ denote the minimum of the quotients $\frac{b}{a}$ and $\frac{c}{b}$ . Find all values that $t (a, b, c)$ can take.

2013 IFYM, Sozopol, 8

Let $P$ be a polygon that is convex and symmetric to some point $O$. Prove that for some parallelogram $R$ satisfying $P\subset R$ we have \[\frac{|R|}{|P|}\leq \sqrt 2\] where $|R|$ and $|P|$ denote the area of the sets $R$ and $P$, respectively. [i]Proposed by Witold Szczechla, Poland[/i]

1976 IMO, 1

In a convex quadrilateral (in the plane) with the area of $32 \text{ cm}^{2}$ the sum of two opposite sides and a diagonal is $16 \text{ cm}$. Determine all the possible values that the other diagonal can have.

2011 Sharygin Geometry Olympiad, 7

Points $P$ and $Q$ on sides $AB$ and $AC$ of triangle $ABC$ are such that $PB = QC$. Prove that $PQ < BC$.

2018 Stanford Mathematics Tournament, 5

Let $ABCD$ be a quadrilateral with sides $AB$, $BC$, $CD$, $DA$ and diagonals $AC$, $BD$. Suppose that all sides of the quadrilateral have length greater than $ 1$, and that the difference between any side and diagonal is less than 1. Prove that the following inequality holds $$(AB + BC + CD + DA + AC + BD)^2 > 2|AC^3 - BC^3| + 2|BD^3 - AD^3| - (AB + CD)^3$$

2018 Caucasus Mathematical Olympiad, 6

Given a convex quadrilateral $ABCD$ with $\angle BCD=90^\circ$. Let $E$ be the midpoint of $AB$. Prove that $2EC \leqslant AD+BD$.

2003 Gheorghe Vranceanu, 4

Let $ I $ be the incentre of $ ABC $ and $ D,E,F $ be the feet of the perpendiculars from $ I $ to $ BC,CA,AB, $ respectively. Show that $$ \frac{AB}{DE} +\frac{BC}{EF} +\frac{CA}{FD}\ge 6. $$

2018 Ecuador Juniors, 3

Let $ABCD$ be a square. Point $P, Q, R, S$ are chosen on the sides $AB$, $BC$, $CD$, $DA$, respectively, such that $AP + CR \ge AB \ge BQ + DS$. Prove that $$area \,\, (PQRS) \le \frac12 \,\, area \,\, (ABCD)$$ and determine all cases when equality holds.

2009 IMAC Arhimede, 1

Prove for the sidelengths $a,b,c$ of a triangle $ABC$ the inequality $\frac{a^3}{b+c-a}+\frac{b^3}{c+a-b}+\frac{c^3}{a+b-c}\ge a^2+b^2+c^2$

1974 Dutch Mathematical Olympiad, 1

A convex quadrilateral with area $1$ is divided into four quadrilaterals divided by connecting the midpoints of the opposite sides. Prove that each of those four quadrilaterals has area $< \frac38$.