This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 649

2023 Canadian Mathematical Olympiad Qualification, 6

Given triangle $ABC$ with circumcircle $\Gamma$, let $D$, $E$, and $F$ be the midpoints of sides $BC$, $CA$, and $AB$, respectively, and let the lines $AD$, $BE$, and $CF$ intersect $\Gamma$ again at points $J$, $K$, and $L$, respectively. Show that the area of triangle $JKL$ is at least that of triangle $ABC$.

1988 Tournament Of Towns, (202) 6

$M$ is an interior point of a rectangle $ABCD$ and $S$ is its area. Prove that $S \le AM \cdot CM + BM \cdot DM$. (I.J . Goldsheyd)

1966 IMO, 6

Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points in the interiors of the sides $ BC$, $ CA$, $ AB$ of this triangle. Prove that the area of at least one of the three triangles $ AQR$, $ BRP$, $ CPQ$ is less than or equal to one quarter of the area of triangle $ ABC$. [i]Alternative formulation:[/i] Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points on the segments $ BC$, $ CA$, $ AB$, respectively. Prove that $ \min\left\{\left|AQR\right|,\left|BRP\right|,\left|CPQ\right|\right\}\leq\frac14\cdot\left|ABC\right|$, where the abbreviation $ \left|P_1P_2P_3\right|$ denotes the (non-directed) area of an arbitrary triangle $ P_1P_2P_3$.

Geometry Mathley 2011-12, 1.1

Let $ABCDEF$ be a hexagon having all interior angles equal to $120^o$ each. Let $P,Q,R, S, T, V$ be the midpoints of the sides of the hexagon $ABCDEF$. Prove the inequality $$p(PQRSTV ) \ge \frac{\sqrt3}{2} p(ABCDEF)$$, where $p(.)$ denotes the perimeter of the polygon. Nguyễn Tiến Lâm

2007 Balkan MO Shortlist, G4

Points $M,N$ and $P$ on the sides $BC, CA$ and $AB$ of $\vartriangle ABC$ are such that $\vartriangle MNP$ is acute. Denote by $h$ and $H$ the lengths of the shortest altitude of $\vartriangle ABC$ and the longest altitude of $\vartriangle MNP$. Prove that $h \le 2H$.

2018 International Zhautykov Olympiad, 6

In a circle with a radius $R$ a convex hexagon is inscribed. The diagonals $AD$ and $BE$,$BE$ and $CF$,$CF$ and $AD$ of the hexagon intersect at the points $M$,$N$ and$K$, respectively. Let $r_1,r_2,r_3,r_4,r_5,r_6$ be the radii of circles inscribed in triangles $ ABM,BCN,CDK,DEM,EFN,AFK$ respectively. Prove that.$$r_1+r_2+r_3+r_4+r_5+r_6\leq R\sqrt{3}$$ .

1963 IMO Shortlist, 3

In an $n$-gon $A_{1}A_{2}\ldots A_{n}$, all of whose interior angles are equal, the lengths of consecutive sides satisfy the relation \[a_{1}\geq a_{2}\geq \dots \geq a_{n}. \] Prove that $a_{1}=a_{2}= \ldots= a_{n}$.

1988 Greece National Olympiad, 2

Let $ABC$ be a triangle inscribed in circle $C(O,R)$. Let $M$ ba apoint on the arc $BC$ . Let $D,E,Z$ be the feet of the perpendiculars drawn from $M$ on lines $AB,AC,BC$ respectively. Prove that $\frac{(BC)^2}{(MZ)^2} \ge 8\frac{R U_a}{(MD)\cdot(ME)}$ where $U_a$ is the altitude drawn on $BC$.

1978 Chisinau City MO, 157

Prove that the side $AB$ of a convex quadrilateral $ABCD$ is less than its diagonal $AC$ if $|AB|+|BC| \le |AC| +| CD|$.

Brazil L2 Finals (OBM) - geometry, 2010.6

The three sides and the area of a triangle are integers. What is the smallest value of the area of this triangle?

1985 Tournament Of Towns, (085) 1

$a, b$ and $c$ are sides of a triangle, and $\gamma$ is its angle opposite $c$. Prove that $c \ge (a + b) \sin \frac{\gamma}{2}$ (V. Prasolov )

2022 Israel National Olympiad, P3

Let $w$ be a circle of diameter $5$. Four lines were drawn dividing $w$ into $5$ "strips", each of width $1$. The strips were colored orange and purple alternatingly, as depicted. Which area is larger: the orange or the purple?

1978 Chisinau City MO, 163

On the plane $n$ points are selected that do not belong to one straight line. Prove that the shortest closed path passing through all these points is a non-self-intersecting polygon.

2010 Saudi Arabia BMO TST, 2

Show that in any triangle $ABC$ with $\angle A = 90^o$ the following inequality holds $$(AB -AC)^2(BC^2 + 4AB \cdot AC)^ 2 < 2BC^6.$$

Cono Sur Shortlist - geometry, 1993.10

Let $\omega$ be the unit circle centered at the origin of $R^2$. Determine the largest possible value for the radius of the circle inscribed to the triangle $OAP$ where $ P$ lies the circle and $A$ is the projection of $P$ on the axis $OX$.

2009 Junior Balkan Team Selection Tests - Romania, 4

Consider $K$ a polygon in plane, such that the distance between any two vertices is not greater than $1$. Let $X$ and $Y$ be two points inside $K$. Show that there exist a point $Z$, lying on the border of K, such that $XZ + Y Z \le 1$

2017 BMT Spring, 13

Two points are located $10$ units apart, and a circle is drawn with radius $ r$ centered at one of the points. A tangent line to the circle is drawn from the other point. What value of $ r$ maximizes the area of the triangle formed by the two points and the point of tangency?

Ukraine Correspondence MO - geometry, 2007.9

In triangle $ABC$, the lengths of all sides are integers, $\angle B=2 \angle A$ and $\angle C> 90^o$. Find the smallest possible perimeter of this triangle.

2002 District Olympiad, 4

The cube $ABCDA' B' C' D' $has of length a. Consider the points $K \in [AB], L \in [CC' ], M \in [D'A']$. a) Show that $\sqrt3 KL \ge KB + BC + CL$ b) Show that the perimeter of triangle $KLM$ is strictly greater than $2a\sqrt3$.

1989 IMO Shortlist, 7

Show that any two points lying inside a regular $ n\minus{}$gon $ E$ can be joined by two circular arcs lying inside $ E$ and meeting at an angle of at least $ \left(1 \minus{} \frac{2}{n} \right) \cdot \pi.$

1985 Tournament Of Towns, (104) 1

We are given a convex quadrilateral and point $M$ inside it . The perimeter of the quadrilateral has length $L$ while the lengths of the diagonals are $D_1$ and $D_2$. Prove that the sum of the distances from $M$ to the vertices of the quadrilateral are not greater than $L + D_1 + D_2$ . (V. Prasolov)

Champions Tournament Seniors - geometry, 2013.3

On the base of the $ABC$ of the triangular pyramid $SABC$ mark the point $M$ and through it were drawn lines parallel to the edges $SA, SB$ and $SC$, which intersect the side faces at the points $A1_, B_1$ and $C_1$, respectively. Prove that $\sqrt{MA_1}+ \sqrt{MB_1}+ \sqrt{MC_1}\le \sqrt{SA+SB+SC}$

2023 BMT, 25

Let triangle $\vartriangle ABC$ have side lengths $AB = 6$, $BC = 8$, and $CA = 10$. Let $S_1$ be the largest square fitting inside of $\vartriangle ABC$ (sharing points on edges is allowed). Then, for $i \ge 2$, let $S_i$ be the largest square that fits inside of $\vartriangle ABC$ while remaining outside of all other squares $S_1$,$...$, $S_{i-1}$ (with ties broken arbitrarily). For all $i \ge 1$, let $m_i$ be the side length of $S_i$ and let $S$ be the set of all $m_i$. Let $x$ be the $2023$rd largest value in $S$. Compute $\log_2 \left( \frac{1}{x}\right).$ Submit your answer as a decimal $E$ to at most $3$ decimal places. If the correct answer is $A$, your score for this question will be $\max(0, 25 -2|A - E|)$, rounded to the nearest integer

2008 Mathcenter Contest, 3

Let $ABC$ be a triangle whose side lengths are opposite the angle $A,B,C$ are $a,b,c$ respectively. Prove that $$\frac{ab\sin{2C}+bc\sin{ 2A}+ca\sin{2B}}{ab+bc+ca}\leq\frac{\sqrt{3}}{2}$$. [i](nooonuii)[/i]

Kyiv City MO 1984-93 - geometry, 1986.7.5

Prove that the sum of the lengths of the diagonals of an arbitrary quadrilateral is less than the sum of the lengths of its sides.