This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 649

1981 All Soviet Union Mathematical Olympiad, 320

A pupil has tried to make a copy of a convex polygon, drawn inside the unit circle. He draw one side, from its end -- another, and so on. Having finished, he has noticed that the first and the last vertices do not coincide, but are situated $d$ units of length far from each other. The pupil draw angles precisely, but made relative error less than $p$ in the lengths of sides. Prove that $d < 4p$.

2008 Cuba MO, 2

Let $H$ a regular hexagon and let $P$ a point in the plane of $H$. Let $V(P)$ the sum of the distances from $P$ to the vertices of $H$ and let $L(P)$ the sum of the distances from $P$ to the edges of $H$. a) Find all points $P$ so that $L(P)$ is minimun b) Find all points $P$ so that $V(P)$ is minimun

2009 Indonesia TST, 2

Given a triangle $ \,ABC,\,$ let $ \,I\,$ be the center of its inscribed circle. The internal bisectors of the angles $ \,A,B,C\,$ meet the opposite sides in $ \,A^{\prime },B^{\prime },C^{\prime }\,$ respectively. Prove that \[ \frac {1}{4} < \frac {AI\cdot BI\cdot CI}{AA^{\prime }\cdot BB^{\prime }\cdot CC^{\prime }} \leq \frac {8}{27}. \]

LMT Team Rounds 2010-20, 2017 MaxArea

The goal of this problem is to show that the maximum area of a polygon with a fixed number of sides and a fixed perimeter is achieved by a regular polygon. (a) Prove that the polygon with maximum area must be convex. (Hint: If any angle is concave, show that the polygon’s area can be increased.) (b) Prove that if two adjacent sides have different lengths, the area of the polygon can be increased without changing the perimeter. (c) Prove that the polygon with maximum area is equilateral, that is, has all the same side lengths. It is true that when given all four side lengths in order of a quadrilateral, the maximum area is achieved in the unique configuration in which the quadrilateral is cyclic, that is, it can be inscribed in a circle. (d) Prove that in an equilateral polygon, if any two adjacent angles are different then the area of the polygon can be increased without changing the perimeter. (e) Prove that the polygon of maximum area must be equiangular, or have all angles equal. (f ) Prove that the polygon of maximum area is a regular polygon. PS. You had better use hide for answers.

1966 IMO Longlists, 38

Two concentric circles have radii $R$ and $r$ respectively. Determine the greatest possible number of circles that are tangent to both these circles and mutually nonintersecting. Prove that this number lies between $\frac 32 \cdot \frac{\sqrt R +\sqrt r }{\sqrt R -\sqrt r } -1$ and $\frac{63}{20} \cdot \frac{R+r}{R-r}.$

2016 BMT Spring, 16

What is the radius of the largest sphere that fits inside the tetrahedron whose vertices are the points $(0, 0, 0)$, $(1, 0, 0)$, $(0, 1, 0)$, $(0, 0, 1)$?

2010 Germany Team Selection Test, 2

Let $P$ be a polygon that is convex and symmetric to some point $O$. Prove that for some parallelogram $R$ satisfying $P\subset R$ we have \[\frac{|R|}{|P|}\leq \sqrt 2\] where $|R|$ and $|P|$ denote the area of the sets $R$ and $P$, respectively. [i]Proposed by Witold Szczechla, Poland[/i]

2005 Oral Moscow Geometry Olympiad, 5

An arbitrary point $M$ is chosen inside the triangle $ABC$. Prove that $MA + MB + MC \le max (AB + BC, BC + AC, AC + AB)$. (N. Sedrakyan)

2021 International Zhautykov Olympiad, 4

Let there be an incircle of triangle $ABC$, and 3 circles each inscribed between incircle and angles of $ABC$. Let $r, r_1, r_2, r_3$ be radii of these circles ($r_1, r_2, r_3 < r$). Prove that $$r_1+r_2+r_3 \geq r$$

1997 IMO Shortlist, 7

The lengths of the sides of a convex hexagon $ ABCDEF$ satisfy $ AB \equal{} BC$, $ CD \equal{} DE$, $ EF \equal{} FA$. Prove that: \[ \frac {BC}{BE} \plus{} \frac {DE}{DA} \plus{} \frac {FA}{FC} \geq \frac {3}{2}. \]

2004 IMO Shortlist, 6

Let $P$ be a convex polygon. Prove that there exists a convex hexagon that is contained in $P$ and whose area is at least $\frac34$ of the area of the polygon $P$. [i]Alternative version.[/i] Let $P$ be a convex polygon with $n\geq 6$ vertices. Prove that there exists a convex hexagon with [b]a)[/b] vertices on the sides of the polygon (or) [b]b)[/b] vertices among the vertices of the polygon such that the area of the hexagon is at least $\frac{3}{4}$ of the area of the polygon. [i]Proposed by Ben Green and Edward Crane, United Kingdom[/i]

2001 Chile National Olympiad, 3

In a triangle $ \vartriangle ABC $, let $ h_a, h_b $ and $ h_c $ the atlitudes. Let $ D $ be the point where the inner bisector of $ \angle BAC $ cuts to the side $ BC $ and $ d_a $ is the distance from the $ D $ point next to $ AB $. The distances $ d_b $ and $ d_c $ are similarly defined. Show that: $$ \dfrac {3} {2} \le \dfrac {d_a} {h_a} + \dfrac {d_b} {h_b} + \dfrac {d_c} {h_c} $$ For what kind of triangles does the equality hold?

Indonesia MO Shortlist - geometry, g6

Suppose the points $D, E, F$ lie on sides $BC, CA, AB$, respectively, so that $AD, BE, CF$ are the altitudes. Also, let $AD$ and $EF$ intersect at $P$. Prove that $$\frac{AP}{AD} \ge 1 - \frac{BC^2}{AB^2 + CA^2}$$

MathLinks Contest 1st, 3

Prove that in any acute triangle with sides $a, b, c$ circumscribed in a circle of radius $R$ the following inequality holds: $$\frac{\sqrt2}{4} <\frac{Rp}{2aR + bc} <\frac{1}{2}$$ where $p$ represents the semi-perimeter of the triangle.

2004 Cuba MO, 9

The angle $\angle XOY =\alpha $ and the points $A$ and $B$ on OY are given such that $OA = a$ and $OB = b$ with $a > b$. A circle passes through the points $A$ and $B$ and is tangent to $OX$. a) Calculate the radius of that circle in terms of $a, b$ and $\alpha $. b) If $a$ and $b$ are constants and $\alpha $ varies, show that the minimum value of the radius of the circle is $\frac{a-b}{2}$.

Indonesia MO Shortlist - geometry, g7

In triangle $ABC$, find the smallest possible value of $$|(\cot A + \cot B)(\cot B +\cot C)(\cot C + \cot A)|$$

1989 IMO, 4

Let $ ABCD$ be a convex quadrilateral such that the sides $ AB, AD, BC$ satisfy $ AB \equal{} AD \plus{} BC.$ There exists a point $ P$ inside the quadrilateral at a distance $ h$ from the line $ CD$ such that $ AP \equal{} h \plus{} AD$ and $ BP \equal{} h \plus{} BC.$ Show that: \[ \frac {1}{\sqrt {h}} \geq \frac {1}{\sqrt {AD}} \plus{} \frac {1}{\sqrt {BC}} \]

Kyiv City MO 1984-93 - geometry, 1985.8.3

The longest diagonal of a convex hexagon is $2$. Is there necessarily a side or diagonal in this hexagon whose length does not exceed $1$?

IV Soros Olympiad 1997 - 98 (Russia), 9.3

Through point $O$ - the center of a circle circumscribed around an acute triangle - a straight line is drawn, perpendicular to one of its sides and intersecting the other two sides of the triangle (or their extensions) at points $M $ and $N$. Prove that $OM+ON \ge R$, where $R$ is the radius of the circumscribed circle around the triangle.

VMEO III 2006 Shortlist, G3

The tetrahedron $OABC$ has all angles at vertex $O$ equal to $60^o$. Prove that $$AB \cdot BC + BC \cdot CA + CA \cdot AB \ge OA^2 + OB^2 + OC^2$$

2009 Belarus Team Selection Test, 1

Let $M,N$ be the midpoints of the sides $AD,BC$ respectively of the convex quadrilateral $ABCD$, $K=AN \cap BM$, $L=CM \cap DN$. Find the smallest possible $c\in R$ such that $S(MKNL)<c \cdot S(ABCD)$ for any convex quadrilateral $ABCD$. I. Voronovich

2020 Israel National Olympiad, 5

Two triangles $ACE, BDF$ are given which intersect at six points: $G, H, I, J, K, L$ as in the picture. It is known that in each of the quadrilaterals \[ABIK ,BCJL ,CDKG ,DELH ,EFGI\] it is possible to inscribe a circle. Is it possible for the quadrilateral $FAHJ$ is also circumscribed around a circle?

Russian TST 2021, P2

In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\] (A disk is assumed to contain its boundary.)

1982 All Soviet Union Mathematical Olympiad, 348

The $KLMN$ tetrahedron (triangle pyramid) vertices are situated inside or on the faces or on the edges of the $ABCD$ tetrahedron. Prove that perimeter of $KLMN$ is less than $4/3$ perimeter of $ABCD$.

2016 China Team Selection Test, 2

Find the smallest positive number $\lambda$, such that for any $12$ points on the plane $P_1,P_2,\ldots,P_{12}$(can overlap), if the distance between any two of them does not exceed $1$, then $\sum_{1\le i<j\le 12} |P_iP_j|^2\le \lambda$.