This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 649

1999 Romania National Olympiad, 2

On the sides $(AB)$, $(BC)$, $(CD)$ and $(DA)$ of the regular tetrahedron $ABCD$, one considers the points $M$, $N$, $P$, $Q$, respectively Prove that $$MN \cdot NP \cdot PQ \cdot QM \ge AM \cdot BN \cdot CP \cdot DQ.$$

1992 IMO Longlists, 4

Let $p, q$, and $r$ be the angles of a triangle, and let $a = \sin2p, b = \sin2q$, and $c = \sin2r$. If $s = \frac{(a + b + c)}2$, show that \[s(s - a)(s - b)(s -c) \geq 0.\] When does equality hold?

2015 Balkan MO Shortlist, A3

Let a$,b,c$ be sidelengths of a triangle and $m_a,m_b,m_c$ the medians at the corresponding sides. Prove that $$m_a\left(\frac{b}{a}-1\right)\left(\frac{c}{a}-1\right)+ m_b\left(\frac{a}{b}-1\right)\left(\frac{c}{b}-1\right) +m_c\left(\frac{a}{c}-1\right)\left(\frac{b}{c}-1\right)\geq 0.$$ (FYROM)

III Soros Olympiad 1996 - 97 (Russia), 10.10

There are several triangles. From them a new triangle is obtained according to the following rule. The largest side of the new triangle is equal to the sum of the large sides of the data, the middle one is equal to the sum of the middle sides, and the smallest one is the sum of the smaller ones. Prove that if all the angles of these triangles were less than $a$, and $\phi$, where $\phi$ is the largest angle of the resulting triangle, then $\cos \phi \ge 1-\sin (a/2)$.

2011 Bundeswettbewerb Mathematik, 4

Let $ABCD$ be a tetrahedron that is not degenerate and not necessarily regular, where sides $AD$ and $BC$ have the same length $a$, sides $BD$ and $AC$ have the same length $b$, side $AB$ has length $c_1$ and the side $CD$ has length $c_2$. There is a point $P$ for which the sum of the distances to the vertices of the tetrahedron is minimal. Determine this sum depending on the quantities $a, b, c_1$ and $c_2$.

1955 Moscow Mathematical Olympiad, 300

Inside $\vartriangle ABC$, there is fixed a point $D$ such that $AC - DA > 1$ and $BC - BD > 1$. Prove that $EC - ED > 1$ for any point $E$ on segment $AB$.

2002 IMO Shortlist, 6

Let $n\geq3$ be a positive integer. Let $C_1,C_2,C_3,\ldots,C_n$ be unit circles in the plane, with centres $O_1,O_2,O_3,\ldots,O_n$ respectively. If no line meets more than two of the circles, prove that \[ \sum\limits^{}_{1\leq i<j\leq n}{1\over O_iO_j}\leq{(n-1)\pi\over 4}. \]

2019 Regional Olympiad of Mexico Northwest, 3

On a circle $\omega$ with center O and radius $r$ three different points $A, B$ and $C$ are chosen. Let $\omega_1$ and $\omega_2$ be the circles that pass through $A$ and are tangent to line $BC$ at points $B$ and $C$, respectively. (a) Show that the product of the areas of $\omega_1$ and $\omega_2$ is independent of the choice of the points $A, B$ and $C$. (b) Determine the minimum value that the sum of the areas of $\omega_1$ and $\omega_2$ can take and for what configurations of points $A, B$ and $C$ on $\omega$ this minimum value is reached.

2023 German National Olympiad, 2

In a triangle, the edges are extended past both vertices by the length of the edge opposite to the respective vertex. Show that the area of the resulting hexagon is at least $13$ times the area of the original triangle.

2016 BMT Spring, 10

What is the smallest possible perimeter of a triangle with integer coordinate vertices, area $\frac12$, and no side parallel to an axis?

1993 IMO Shortlist, 8

The vertices $D,E,F$ of an equilateral triangle lie on the sides $BC,CA,AB$ respectively of a triangle $ABC.$ If $a,b,c$ are the respective lengths of these sides, and $S$ the area of $ABC,$ prove that \[ DE \geq \frac{2 \cdot \sqrt{2} \cdot S}{\sqrt{a^2 + b^2 + c^2 + 4 \cdot \sqrt{3} \cdot S}}. \]

2000 Romania National Olympiad, 2b

If $a, b, c$ represent the lengths of the sides of a triangle, prove that: $$\frac{a}{b-a+c}+ \frac{b}{b-a+c}+ \frac{c}{b-a+c} \ge 3$$

2018 Balkan MO Shortlist, G3

Let $P$ be an interior point of triangle $ABC$. Let $a,b,c$ be the sidelengths of triangle $ABC$ and let $p$ be it's semiperimeter. Find the maximum possible value of $$ \min\left(\frac{PA}{p-a},\frac{PB}{p-b},\frac{PC}{p-c}\right)$$ taking into consideration all possible choices of triangle $ABC$ and of point $P$. by Elton Bojaxhiu, Albania

Indonesia Regional MO OSP SMA - geometry, 2005.1

The length of the largest side of the cyclic quadrilateral $ABCD$ is $a$, while the radius of the circumcircle of $\vartriangle ACD$ is $1$. Find the smallest possible value for $a$. Which cyclic quadrilateral $ABCD$ gives the value $a$ equal to the smallest value?

1968 German National Olympiad, 2

Which of all planes, the one and the same body diagonal of a cube with the edge length $a$, cuts out a cut figure with the smallest area from the cube? Calculate the area of such a cut figure. [hide=original wording]Welche von allen Ebenen, die eine und dieselbe Korperdiagonale eines Wurfels mit der Kantenlange a enthalten, schneiden aus den W¨urfel eine Schnittfigur kleinsten Flacheninhaltes heraus? Berechnen Sie den Fl¨acheninhalt solch einer Schnittfigur![/hide]

1988 Greece National Olympiad, 3

Two circles $(O_1,R_1)$,$(O_2,R_2)$ lie each external to the other. Find : a) the minimum length of the segment connecting points of the circles b) the max length of the segment connecting points of the circles

2017 Latvia Baltic Way TST, 11

On the extension of the angle bisector $AL$ of the triangle $ABC$, a point $P$ is placed such that $P L = AL$. Prove that the perimeter of triangle $PBC$ does not exceed the perimeter of triangle $ABC$.

2006 IMO Shortlist, 10

Assign to each side $b$ of a convex polygon $P$ the maximum area of a triangle that has $b$ as a side and is contained in $P$. Show that the sum of the areas assigned to the sides of $P$ is at least twice the area of $P$.

2006 Junior Tuymaada Olympiad, 7

The median $ BM $ of a triangle $ ABC $ intersects the circumscribed circle at point $ K $. The circumcircle of the triangle $ KMC $ intersects the segment $ BC $ at point $ P $, and the circumcircle of $ AMK $ intersects the extension of $ BA $ at $ Q $. Prove that $ PQ> AC $.

1988 Tournament Of Towns, (199) 2

Prove that $a^2pq + b^2qr + c^2rp \le 0$, whenever $a, b$ and $c$ are the lengths of the sides of a triangle and $p + q + r = 0$ . ( J. Mustafaev , year 12 student, Baku)

2018 Oral Moscow Geometry Olympiad, 5

Two ants sit on the surface of a tetrahedron. Prove that they can meet by breaking the sum of a distance not exceeding the diameter of a circle is circumscribed around the edge of a tetrahedron.

1983 All Soviet Union Mathematical Olympiad, 368

The points $D,E,F$ belong to the sides $(AB), (BC)$ and $(CA)$ of the triangle $ABC$ respectively (but they are not vertices). Let us denote with $d_0, d_1, d_2$, and $d_3$ the maximal side length of the triangles $DEF$, $DEA$, $DBF$, $CEF$, respectively. Prove that $$d_0 \ge \frac{\sqrt3}{2} min\{d_1, d_2, d_3\}$$ When the equality takes place?

2019 Saint Petersburg Mathematical Olympiad, 3

Prove that the distance between the midpoint of side $BC$ of triangle $ABC$ and the midpoint of the arc $ABC$ of its circumscribed circle is not less than $AB / 2$

VI Soros Olympiad 1999 - 2000 (Russia), 10.6

Points $A$ and $B$ are given on a circle. With the help of a compass and a ruler, construct on this circle the points $C,$ $D$, $E$ that lie on one side of the straight line $AB$ and for which the pentagon with vertices $A$, $B$, $C$, $D$, $E$ has the largest possible area

1982 IMO Longlists, 57

Let $K$ be a convex polygon in the plane and suppose that $K$ is positioned in the coordinate system in such a way that \[\text{area } (K \cap Q_i) =\frac 14 \text{area } K \ (i = 1, 2, 3, 4, ),\] where the $Q_i$ denote the quadrants of the plane. Prove that if $K$ contains no nonzero lattice point, then the area of $K$ is less than $4.$