Found problems: 649
2023 Macedonian Team Selection Test, Problem 2
Let $ABC$ be an acute triangle such that $AB<AC$ and $AB<BC$. Let $P$ be a point on the segment $BC$ such that $\angle APB = \angle BAC$. The tangent to the circumcircle of triangle $ABC$ at $A$ meets the circumcircle of triangle $APB$ at $Q \neq A$. Let $Q'$ be the reflection of $Q$ with respect to the midpoint of $AB$. The line $PQ$ meets the segment $AQ'$ at $S$. Prove that
$$\frac{1}{AB}+\frac{1}{AC} > \frac{1}{CS}.$$
[i]Authored by Nikola Velov[/i]
2004 Germany Team Selection Test, 3
Let $ABC$ be a triangle with semiperimeter $s$ and inradius $r$. The semicircles with diameters $BC$, $CA$, $AB$ are drawn on the outside of the triangle $ABC$. The circle tangent to all of these three semicircles has radius $t$. Prove that
\[\frac{s}{2}<t\le\frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right)r. \]
[i]Alternative formulation.[/i] In a triangle $ABC$, construct circles with diameters $BC$, $CA$, and $AB$, respectively. Construct a circle $w$ externally tangent to these three circles. Let the radius of this circle $w$ be $t$.
Prove: $\frac{s}{2}<t\le\frac{s}{2}+\frac12\left(2-\sqrt3\right)r$, where $r$ is the inradius and $s$ is the semiperimeter of triangle $ABC$.
[i]Proposed by Dirk Laurie, South Africa[/i]
2009 Iran MO (3rd Round), 1
Suppose $n>2$ and let $A_1,\dots,A_n$ be points on the plane such that no three are collinear.
[b](a)[/b] Suppose $M_1,\dots,M_n$ be points on segments $A_1A_2,A_2A_3,\dots ,A_nA_1$ respectively. Prove that if $B_1,\dots,B_n$ are points in triangles $M_2A_2M_1,M_3A_3M_2,\dots ,M_1A_1M_n$ respectively then \[|B_1B_2|+|B_2B_3|+\dots+|B_nB_1| \leq |A_1A_2|+|A_2A_3|+\dots+|A_nA_1|\]
Where $|XY|$ means the length of line segment between $X$ and $Y$.
[b](b)[/b] If $X$, $Y$ and $Z$ are three points on the plane then by $H_{XYZ}$ we mean the half-plane that it's boundary is the exterior angle bisector of angle $\hat{XYZ}$ and doesn't contain $X$ and $Z$ ,having $Y$ crossed out.
Prove that if $C_1,\dots ,C_n$ are points in ${H_{A_nA_1A_2},H_{A_1A_2A_3},\dots,H_{A_{n-1}A_nA_1}}$ then \[|A_1A_2|+|A_2A_3|+\dots +|A_nA_1| \leq |C_1C_2|+|C_2C_3|+\dots+|C_nC_1|\]
Time allowed for this problem was 2 hours.
Indonesia MO Shortlist - geometry, g4
Let $D, E, F$, be the touchpoints of the incircle in triangle $ABC$ with sides $BC, CA, AB$, respectively, . Also, let $AD$ and $EF$ intersect at $P$. Prove that $$\frac{AP}{AD} \ge 1 - \frac{BC}{AB + CA}$$.
2020 Ukrainian Geometry Olympiad - April, 5
Inside the convex quadrilateral $ABCD$ there is a point $M$ such that $\angle AMB = \angle ADM + \angle BCM$ and $\angle AMD = \angle ABM + \angle DCM$. Prove that $AM \cdot CM + BM \cdot DM \ge \sqrt{AB \cdot BC\cdot CD \cdot DA}$
2025 Sharygin Geometry Olympiad, 11
A point $X$ is the origin of three rays such that the angle between any two of them equals $120^{\circ}$. Let $\omega$ be an arbitrary circle with radius $R$ such that $X$ lies inside it, and $A$, $B$, $C$ be the common points of the rays with this circle. Find $max(XA+XB+XC)$.
Proposed by: F.Nilov
1999 Romania National Olympiad, 3
Let $ABCD$ be a convex quadrilateral with $\angle BAC = \angle CAD$, $\angle ABC =\angle ACD$, $(AD \cap (BC =\{E\}$, $(AB \cap (DC = \{F\}$. Prove that:
a) $AB\cdot DE = BC \cdot CE$
b) $AC^2 < \frac12 (AD \cdot AF + AB \cdot AE).$
1989 IMO Shortlist, 6
For a triangle $ ABC,$ let $ k$ be its circumcircle with radius $ r.$ The bisectors of the inner angles $ A, B,$ and $ C$ of the triangle intersect respectively the circle $ k$ again at points $ A', B',$ and $ C'.$ Prove the inequality
\[ 16Q^3 \geq 27 r^4 P,\]
where $ Q$ and $ P$ are the areas of the triangles $ A'B'C'$ and $ABC$ respectively.
2012 Thailand Mathematical Olympiad, 4
Let $ABCD$ be a unit square. Points $E, F, G, H$ are chosen outside $ABCD$ so that $\angle AEB =\angle BF C = \angle CGD = \angle DHA = 90^o$ . Let $O_1, O_2, O_3, O_4$, respectively, be the incenters of $\vartriangle ABE, \vartriangle BCF, \vartriangle CDG, \vartriangle DAH$. Show that the area of $O_1O_2O_3O_4$ is at most $1$.
Ukraine Correspondence MO - geometry, 2003.5
Let $O$ be the center of the circle $\omega$, and let $A$ be a point inside this circle, different from $O$. Find all points $P$ on the circle $\omega$ for which the angle $\angle OPA$ acquires the greatest value.
2017 BMT Spring, 16
Let $ABC$ be a triangle with $AB = 3$, $BC = 5$, $AC = 7$, and let $ P$ be a point in its interior. If $G_A$, $G_B$, $G_C$ are the centroids of $\vartriangle PBC$, $\vartriangle PAC$, $\vartriangle PAB$, respectively, find the maximum possible area of $\vartriangle G_AG_BG_C$.
2016 IFYM, Sozopol, 5
Prove that for an arbitrary $\Delta ABC$ the following inequality holds:
$\frac{l_a}{m_a}+\frac{l_b}{m_b}+\frac{l_c}{m_c} >1$,
Where $l_a,l_b,l_c$ and $m_a,m_b,m_c$ are the lengths of the bisectors and medians through $A$, $B$, and $C$.
1987 Greece National Olympiad, 4
Let $A,B$ be two points interior of circle $C(O,R)$ and $M$ a point on the circle. Let $A_1,B_1$ be the intersections of the circle with lines $MA$,$MB$ respectively. Let $G$ be the midpoint of $AB$and $G_1= C\cap MG$. Prove that$$\frac{MA}{AA_1}+ \frac{MB}{BB_1}> 2\frac{MG}{GG_1}$$
1988 IMO Longlists, 79
Let $ ABC$ be an acute-angled triangle. Let $ L$ be any line in the plane of the triangle $ ABC$. Denote by $ u$, $ v$, $ w$ the lengths of the perpendiculars to $ L$ from $ A$, $ B$, $ C$ respectively. Prove the inequality $ u^2\cdot\tan A \plus{} v^2\cdot\tan B \plus{} w^2\cdot\tan C\geq 2\cdot S$, where $ S$ is the area of the triangle $ ABC$. Determine the lines $ L$ for which equality holds.
2008 Balkan MO Shortlist, G8
Let $P$ be a point in the interior of a triangle $ABC$ and let $d_a,d_b,d_c$ be its distances to $BC,CA,AB$ respectively. Prove that max $(AP, BP, CP) \ge \sqrt{d_a^2+d_b^2+d_c^2}$
1948 Moscow Mathematical Olympiad, 149
Let $R$ and $r$ be the radii of the circles circumscribed and inscribed, respectively, in a triangle. Prove that $R \ge 2r$, and that $R = 2r$ only for an equilateral triangle.
1954 Moscow Mathematical Olympiad, 271
Do there exist points $A, B, C, D$ in space, such that $AB = CD = 8, AC = BD = 10$, and $AD = BC = 13$?
1983 All Soviet Union Mathematical Olympiad, 365
One side of the rectangle is $1$ cm. It is known that the rectangle can be divided by two orthogonal lines onto four rectangles, and each of the smaller rectangles has the area not less than $1$ square centimetre, and one of them is not less than $2$ square centimetres. What is the least possible length of another side of big rectangle?
Estonia Open Senior - geometry, 1999.2.3
Two right triangles are given, of which the incircle of the first triangle is the circumcircle of the second triangle. Let the areas of the triangles be $S$ and $S'$ respectively. Prove that $\frac{S}{S'} \ge 3 +2\sqrt2$
1998 Tournament Of Towns, 5
The sum of the length, width, and height of a rectangular parallelepiped will be called its size. Can it happen that one rectangular parallelepiped contains another one of greater size?
(A Shen)
1989 IMO Longlists, 67
Prove that the intersection of a plane and a regular tetrahedron can be an obtuse-angled triangle and that the obtuse angle in any such triangle is always smaller than $ 120^{\circ}.$
2018 JBMO Shortlist, G6
Let $XY$ be a chord of a circle $\Omega$, with center $O$, which is not a diameter. Let $P, Q$ be two distinct points inside the segment $XY$, where $Q$ lies between $P$ and $X$. Let $\ell$ the perpendicular line drawn from $P$ to the diameter which passes through $Q$. Let $M$ be the intersection point of $\ell$ and $\Omega$, which is closer to $P$. Prove that $$ MP \cdot XY \ge 2 \cdot QX \cdot PY$$
2012 India Regional Mathematical Olympiad, 4
Let $a,b,c$ be positive real numbers such that $abc(a+b+c)=3.$ Prove that we have
\[(a+b)(b+c)(c+a)\geq 8.\]
Also determine the case of equality.
2009 Puerto Rico Team Selection Test, 3
Show that if $ h_A, h_B,$ and $ h_C$ are the altitudes of $ \triangle ABC$, and $ r$ is the radius of the incircle, then $$ h_A + h_B + h_C \ge 9r$$
2020 Princeton University Math Competition, B3
Let $ABC$ be a triangle and let the points $D, E$ be on the rays $AB$, $AC$ such that $BCED$ is cyclic. Prove that the following two statements are equivalent:
$\bullet$ There is a point $X$ on the circumcircle of $ABC$ such that $BDX$, $CEX$ are tangent to each other.
$\bullet$ $AB \cdot AD \le 4R^2$, where $R$ is the radius of the circumcircle of $ABC$.