Found problems: 1581
1976 Miklós Schweitzer, 11
Let $ \xi_1,\xi_2,...$ be independent, identically distributed random variables with distribution \[ P(\xi_1=-1)=P(\xi_1=1)=\frac
12 .\] Write $ S_n=\xi_1+\xi_2+...+\xi_n \;(n=1,2,...),\ \;S_0=0\ ,$ and \[ T_n= \frac{1}{\sqrt{n}} \max _{ 0 \leq k \leq n}S_k .\] Prove that $ \liminf_{n \rightarrow \infty} (\log n)T_n=0$ with probability one.
[i]P. Revesz[/i]
2000 Canada National Olympiad, 4
Let $ABCD$ be a convex quadrilateral with $\angle CBD = 2 \angle ADB$, $\angle ABD = 2 \angle CDB$ and $AB = CB$.
Prove that $AD = CD$.
2013 Online Math Open Problems, 33
Let $n$ be a positive integer. E. Chen and E. Chen play a game on the $n^2$ points of an $n \times n$ lattice grid. They alternately mark points on the grid such that no player marks a point that is on or inside a non-degenerate triangle formed by three marked points. Each point can be marked only once. The game ends when no player can make a move, and the last player to make a move wins. Determine the number of values of $n$ between $1$ and $2013$ (inclusive) for which the first player can guarantee a win, regardless of the moves that the second player makes.
[i]Ray Li[/i]
2005 Nordic, 4
The circle $\zeta_{1}$ is inside the circle $\zeta_{2}$, and the circles touch each other at $A$. A line through $A$ intersects $\zeta_{1}$ also at $B$, and $\zeta_{2}$ also at $C$. The tangent to $\zeta_{1}$ at $B$ intersects $\zeta_{2}$ at $D$ and $E$. The tangents of $\zeta_{1}$ passing thorugh $C$ touch $\zeta_{2}$ at $F$ and $G$. Prove that $D$, $E$, $F$ and $G$ are concyclic.
2001 ITAMO, 5
Let $ABC$ be a triangle and $\gamma$ the circle inscribed in $ABC$. The circle $\gamma$ is tangent to side $AB$ at the point $T$. Let $D$ be the point of $\gamma$ diametrically opposite to $T$, and $S$ the intersection point of the line through $C$ and $D$ with side $AB$.
Prove that $AT=SB$.
2008 Vietnam National Olympiad, 7
Let $ AD$ is centroid of $ ABC$ triangle. Let $ (d)$ is the perpendicular line with $ AD$. Let $ M$ is a point on $ (d)$. Let $ E, F$ are midpoints of $ MB, MC$ respectively. The line through point $ E$ and perpendicular with $ (d)$ meet $ AB$ at $ P$. The line through point $ F$ and perpendicular with $ (d)$ meet $ AC$ at $ Q$. Let $ (d')$ is a line through point $ M$ and perpendicular with $ PQ$. Prove $ (d')$ always pass a fixed point.
2011 AIME Problems, 5
The vertices of a regular nonagon (9-sided polygon) are to be labeled with the digits $1$ through $9$ in such a way that the sum of the numbers on every three consecutive vertices is a multiple of $3$. Two acceptable arrangements are considered to be indistinguishable if one can be obtained from the other by rotating the nonagon in the plane. Find the number of distinguishable acceptable arrangements.
2014 Online Math Open Problems, 29
Let $ABC$ be a triangle with circumcenter $O$, incenter $I$, and circumcircle $\Gamma$. It is known that $AB = 7$, $BC = 8$, $CA = 9$. Let $M$ denote the midpoint of major arc $\widehat{BAC}$ of $\Gamma$, and let $D$ denote the intersection of $\Gamma$ with the circumcircle of $\triangle IMO$ (other than $M$). Let $E$ denote the reflection of $D$ over line $IO$. Find the integer closest to $1000 \cdot \frac{BE}{CE}$.
[i]Proposed by Evan Chen[/i]
1994 China Team Selection Test, 3
Find the smallest $n \in \mathbb{N}$ such that if any 5 vertices of a regular $n$-gon are colored red, there exists a line of symmetry $l$ of the $n$-gon such that every red point is reflected across $l$ to a non-red point.
MathLinks Contest 7th, 4.1
Let $ A,B,C,D,E$ be five distinct points, such that no three of them lie on the same line. Prove that
\[ AB\plus{}BC\plus{}CA \plus{} DE < AD \plus{} AE \plus{} BD\plus{}BE \plus{} CD\plus{}CE .\]
2014 International Zhautykov Olympiad, 3
Four segments divide a convex quadrilateral into nine quadrilaterals. The points of intersections of these segments lie on the diagonals of the quadrilateral (see figure). It is known that the quadrilaterals 1, 2, 3, 4 admit inscribed circles. Prove that the quadrilateral 5 also has an inscribed circle.
[asy]
pair A,B,C,D,E,F,G,H,I,J,K,L;
A=(-4.0,4.0);B=(-1.06,4.34);C=(-0.02,4.46);D=(4.14,4.93);E=(3.81,0.85);F=(3.7,-0.42);
G=(3.49,-3.05);H=(1.37,-2.88);I=(-1.46,-2.65);J=(-2.91,-2.52);K=(-3.14,-1.03);L=(-3.61,1.64);
draw(A--D);draw(D--G);draw(G--J);draw(J--A);
draw(A--G);draw(D--J);
draw(B--I);draw(C--H);draw(E--L);draw(F--K);
pair R,S,T,U,V;
R=(-2.52,2.56);S=(1.91,2.58);T=(-0.63,-0.11);U=(-2.37,-1.94);V=(2.38,-2.06);
label("1",R,N);label("2",S,N);label("3",T,N);label("4",U,N);label("5",V,N);
[/asy]
[i]Proposed by Nairi M. Sedrakyan, Armenia[/i]
2001 AMC 12/AHSME, 13
The parabola with equation $ y \equal{} ax^2 \plus{} bx \plus{} c$ and vertex $ (h,k)$ is reflected about the line $ y \equal{} k$. This results in the parabola with equation $ y \equal{} dx^2 \plus{} ex \plus{} f$. Which of the following equals $ a \plus{} b \plus{} c \plus{} d \plus{} e \plus{} f$?
$ \textbf{(A)} \ 2b \qquad \textbf{(B)} \ 2c \qquad \textbf{(C)} \ 2a \plus{} 2b \qquad \textbf{(D)} \ 2h \qquad \textbf{(E)} \ 2k$
2008 District Olympiad, 4
Let $ ABCD$ be a cyclic quadrilater. Denote $ P\equal{}AD\cap BC$ and $ Q\equal{}AB \cap CD$. Let $ E$ be the fourth vertex of the parallelogram $ ABCE$ and $ F\equal{}CE\cap PQ$. Prove that $ D,E,F$ and $ Q$ lie on the same circle.
1983 IMO Longlists, 14
Let $\ell$ be tangent to the circle $k$ at $B$. Let $A$ be a point on $k$ and $P$ the foot of perpendicular from $A$ to $\ell$. Let $M$ be symmetric to $P$ with respect to $AB$. Find the set of all such points $M.$
2006 MOP Homework, 1
Determine if there is a way to tile a $5 \times 6$ unit square board by dominos such that one can not use a needle to peer through the tiling? Determine if there is a way to tile a $5 \times 6$ unit square board by dominos such that one can use a needle to through the tiling? What if it is a $6 \times 6$ board?
OMMC POTM, 2022 6
Let $G$ be the centroid of $\triangle ABC.$ A rotation $120^\circ$ clockwise about $G$ takes $B$ and $C$ to $B_1$ and $C_1$ respectively. A rotation $120^\circ$ counterclockwise about $G$ takes $B$ and $C$ to $B_2$ and $C_2$ respectively. Prove $\triangle AB_1C_2$ and $\triangle AB_2C_1$ are equilateral.
[i]Proposed by Evan Chang (squareman), USA [/i]
[img]https://cdn.artofproblemsolving.com/attachments/3/b/46b4f09edcf17755df2dea3546881475db6eff.png[/img]
2013 China Western Mathematical Olympiad, 3
Let $ABC$ be a triangle, and $B_1,C_1$ be its excenters opposite $B,C$. $B_2,C_2$ are reflections of $B_1,C_1$ across midpoints of $AC,AB$. Let $D$ be the extouch at $BC$. Show that $AD$ is perpendicular to $B_2C_2$
2009 Spain Mathematical Olympiad, 6
Inside a circle of center $ O$ and radius $ r$, take two points $ A$ and $ B$ symmetrical about $ O$. We consider a variable point $ P$ on the circle and draw the chord $ \overline{PP'}\perp \overline{AP}$. Let $ C$ is the symmetric of $ B$ about $ \overline{PP'}$ ($ \overline{PP}'$ is the axis of symmetry) . Find the locus of point $ Q \equal{} \overline{PP'}\cap\overline{AC}$ when we change $ P$ in the circle.
2013 Iran Team Selection Test, 13
$P$ is an arbitrary point inside acute triangle $ABC$. Let $A_1,B_1,C_1$ be the reflections of point $P$ with respect to sides $BC,CA,AB$. Prove that the centroid of triangle $A_1B_1C_1$ lies inside triangle $ABC$.
2005 USA Team Selection Test, 5
Find all finite sets $S$ of points in the plane with the following property: for any three distinct points $A,B,$ and $C$ in $S,$ there is a fourth point $D$ in $S$ such that $A,B,C,$ and $D$ are the vertices of a parallelogram (in some order).
2013 India Regional Mathematical Olympiad, 5
In a triangle $ABC$, let $H$ denote its orthocentre. Let $P$ be the reflection of $A$ with respect to $BC$. The circumcircle of triangle $ABP$ intersects the line $BH$ again at $Q$, and the circumcircle of triangle $ACP$ intersects the line $CH$ again at $R$. Prove that $H$ is the incentre of triangle $PQR$.
2005 Harvard-MIT Mathematics Tournament, 10
Let $AB$ be a diameter of a semicircle $\Gamma$. Two circles, $\omega_1$ and $\omega_2$, externally tangent to each other and internally tangent to $\Gamma$, are tangent to the line $AB$ at $P$ and $Q$, respectively, and to semicircular arc $AB$ at $C$ and $D$, respectively, with $AP<AQ$. Suppose $F$ lies on $\Gamma$ such that $ \angle FQB = \angle CQA $ and that $ \angle ABF = 80^\circ $. Find $ \angle PDQ $ in degrees.
2009 All-Russian Olympiad, 4
On a circle there are 2009 nonnegative integers not greater than 100. If two numbers sit next to each other, we can increase both of them by 1. We can do this at most $ k$ times. What is the minimum $ k$ so that we can make all the numbers on the circle equal?
2012 Sharygin Geometry Olympiad, 9
In triangle $ABC$, given lines $l_{b}$ and $l_{c}$ containing the bisectors of angles $B$ and $C$, and the foot $L_{1}$ of the bisector of angle $A$. Restore triangle $ABC$.
2022 Turkey EGMO TST, 1
Given an acute angle triangle $ABC$ with circumcircle $\Gamma$ and circumcenter $O$. A point $P$ is taken on the line $BC$ but not on $[BC]$. Let $K$ be the reflection of the second intersection of the line $AP$ and $\Gamma$ with respect to $OP$. If $M$ is the intersection of the lines $AK$ and $OP$, prove that $\angle OMB+\angle OMC=180^{\circ}$.