Found problems: 1581
2007 Vietnam Team Selection Test, 2
Let $ABC$ be an acute triangle with incricle $(I)$. $(K_{A})$ is the cricle such that $A\in (K_{A})$ and $AK_{A}\perp BC$ and it in-tangent for $(I)$ at $A_{1}$, similary we have $B_{1},C_{1}$.
a) Prove that $AA_{1},BB_{1},CC_{1}$ are concurrent, called point-concurrent is $P$.
b) Assume circles $(J_{A}),(J_{B}),(J_{C})$ are symmetry for excircles $(I_{A}),(I_{B}),(I_{C})$ across midpoints of $BC,CA,AB$ ,resp. Prove that $P_{P/(J_{A})}=P_{P/(J_{B})}=P_{P/(J_{C})}$.
Note. If $(O;R)$ is a circle and $M$ is a point then $P_{M/(O)}=OM^{2}-R^{2}$.
2007 Hungary-Israel Binational, 2
Given is an ellipse $ e$ in the plane. Find the locus of all points $ P$ in space such that the cone of apex $ P$ and directrix $ e$ is a right circular cone.
1967 AMC 12/AHSME, 40
Located inside equilateral triangle $ABC$ is a point $P$ such that $PA=8$, $PB=6$, and $PC=10$. To the nearest integer the area of triangle $ABC$ is:
$\textbf{(A)}\ 159\qquad
\textbf{(B)}\ 131\qquad
\textbf{(C)}\ 95\qquad
\textbf{(D)}\ 79\qquad
\textbf{(E)}\ 50$
2009 All-Russian Olympiad, 2
Let be given a triangle $ ABC$ and its internal angle bisector $ BD$ $ (D\in BC)$. The line $ BD$ intersects the circumcircle $ \Omega$ of triangle $ ABC$ at $ B$ and $ E$. Circle $ \omega$ with diameter $ DE$ cuts $ \Omega$ again at $ F$. Prove that $ BF$ is the symmedian line of triangle $ ABC$.
2010 Balkan MO Shortlist, G5
Let $ABC$ be an acute triangle with orthocentre $H$, and let $M$ be the midpoint of $AC$. The point $C_1$ on $AB$ is such that $CC_1$ is an altitude of the triangle $ABC$. Let $H_1$ be the reflection of $H$ in $AB$. The orthogonal projections of $C_1$ onto the lines $AH_1$, $AC$ and $BC$ are $P$, $Q$ and $R$, respectively. Let $M_1$ be the point such that the circumcentre of triangle $PQR$ is the midpoint of the segment $MM_1$.
Prove that $M_1$ lies on the segment $BH_1$.
2013 India IMO Training Camp, 2
In a triangle $ABC$ with $B = 90^\circ$, $D$ is a point on the segment $BC$ such that the inradii of triangles $ABD$ and $ADC$ are equal. If $\widehat{ADB} = \varphi$ then prove that $\tan^2 (\varphi/2) = \tan (C/2)$.
2000 AMC 12/AHSME, 10
The point $ P \equal{} (1,2,3)$ is reflected in the $ xy$-plane, then its image $ Q$ is rotated by $ 180^\circ$ about the $ x$-axis to produce $ R$, and finally, $ R$ is translated by 5 units in the positive-$ y$ direction to produce $ S$. What are the coordinates of $ S$?
$ \textbf{(A)}\ (1,7, \minus{} 3) \qquad \textbf{(B)}\ ( \minus{} 1,7, \minus{} 3) \qquad \textbf{(C)}\ ( \minus{} 1, \minus{} 2,8) \qquad \textbf{(D)}\ ( \minus{} 1,3,3) \qquad \textbf{(E)}\ (1,3,3)$
2008 Iran MO (3rd Round), 1
Let $ ABC$ be a triangle with $ BC > AC > AB$. Let $ A',B',C'$ be feet of perpendiculars from $ A,B,C$ to $ BC,AC,AB$, such that $ AA' \equal{} BB' \equal{} CC' \equal{} x$. Prove that:
a) If $ ABC\sim A'B'C'$ then $ x \equal{} 2r$
b) Prove that if $ A',B'$ and $ C'$ are collinear, then $ x \equal{} R \plus{} d$ or $ x \equal{} R \minus{} d$.
(In this problem $ R$ is the radius of circumcircle, $ r$ is radius of incircle and $ d \equal{} OI$)
2004 Harvard-MIT Mathematics Tournament, 2
How many ways can you mark 8 squares of an $8\times8$ chessboard so that no two marked squares are in the same row or column, and none of the four corner squares is marked? (Rotations and reflections are considered different.)
2003 Iran MO (3rd Round), 13
here is the most difficult and the most beautiful problem occurs in 21th iranian (2003) olympiad
assume that P is n-gon ,lying on the plane ,we name its edge 1,2,..,n.
if S=s1,s2,s3,.... be a finite or infinite sequence such that for each i, si is in {1,2,...,n},
we move P on the plane according to the S in this form: at first we reflect P through the s1
( s1 means the edge which iys number is s1)then through s2 and so on like the figure below.
a)show that there exist the infinite sequence S sucth that if we move P according to S we cover all the plane
b)prove that the sequence in a) isn't periodic.
c)assume that P is regular pentagon ,which the radius of its circumcircle is 1,and D is circle ,with radius 1.00001 ,arbitrarily in the plane .does exist a sequence S such that we move P according to S then P reside in D completely?
2012 NIMO Problems, 6
In $\triangle ABC$ with circumcenter $O$, $\measuredangle A = 45^\circ$. Denote by $X$ the second intersection of $\overrightarrow{AO}$ with the circumcircle of $\triangle BOC$. Compute the area of quadrilateral $ABXC$ if $BX = 8$ and $CX = 15$.
[i]Proposed by Aaron Lin[/i]
2012 Turkey Junior National Olympiad, 4
We want to place $2012$ pockets, including variously colored balls, into $k$ boxes such that
[b]i)[/b] For any box, all pockets in this box must include a ball with the same color
or
[b]ii)[/b] For any box, all pockets in this box must include a ball having a color which is not included in any other pocket in this box
Find the smallest value of $k$ for which we can always do this placement whatever the number of balls in the pockets and whatever the colors of balls.
2009 USAMTS Problems, 4
Let $ABCDEF$ be a convex hexagon, such that $FA = AB$, $BC = CD$, $DE = EF$, and $\angle FAB = 2\angle EAC$. Suppose that the area of $ABC$ is $25$, the area of $CDE$ is $10$, the area of $EF A$ is $25$, and the area of $ACE$ is $x$. Find, with proof, all possible values of $x$.
2011 Today's Calculation Of Integral, 689
Let $C: y=x^2+ax+b$ be a parabola passing through the point $(1,\ -1)$. Find the minimum volume of the figure enclosed by $C$ and the $x$ axis by a rotation about the $x$ axis.
Proposed by kunny
2009 Kazakhstan National Olympiad, 2
Let in-circle of $ABC$ touch $AB$, $BC$, $AC$ in $C_1$, $A_1$, $B_1$ respectively.
Let $H$- intersection point of altitudes in $A_1B_1C_1$, $I$ and $O$-be in-center and circumcenter of $ABC$ respectively.
Prove, that $I, O, H$ lies on one line.
2004 China Team Selection Test, 1
Points $D,E,F$ are on the sides $BC, CA$ and $AB$, respectively which satisfy $EF || BC$, $D_1$ is a point on $BC,$ Make $D_1E_1 || D_E, D_1F_1 || DF$ which intersect $AC$ and $AB$ at $E_1$ and $F_1$, respectively. Make $\bigtriangleup PBC \sim \bigtriangleup DEF$ such that $P$ and $A$ are on the same side of $BC.$ Prove that $E, E_1F_1, PD_1$ are concurrent.
[color=red][Edit by Darij: See my post #4 below for a [b]possible correction[/b] of this problem. However, I am not sure that it is in fact the problem given at the TST... Does anyone have a reliable translation?][/color]
2012 Online Math Open Problems, 18
The sum of the squares of three positive numbers is $160$. One of the numbers is equal to the sum of the other two. The difference between the smaller two numbers is $4.$ What is the difference between the cubes of the smaller two numbers?
[i]Author: Ray Li[/i]
[hide="Clarification"]The problem should ask for the positive difference.[/hide]
2009 India IMO Training Camp, 1
Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$,
$ r$ being inradius.
Mathley 2014-15, 4
Let $ABC$ be an acute triangle with $E, F$ being the reflections of $B,C$ about the line $AC, AB$ respectively. Point $D$ is the intersection of $BF$ and $CE$. If $K$ is the circumcircle of triangle $DEF$, prove that $AK$ is perpendicular to $BC$.
Nguyen Minh Ha, College of Pedagogical University of Hanoi
1985 AIME Problems, 11
An ellipse has foci at $(9,20)$ and $(49,55)$ in the $xy$-plane and is tangent to the $x$-axis. What is the length of its major axis?
2023 Switzerland - Final Round, 1
Let $ABC$ be an acute triangle with incenter $I$. On its circumcircle, let $M_A$, $M_B$ and $M_C$ be the midpoints of minor arcs $BC, CA$ and $AB$, respectively. Prove that the reflection $M_A$ over the line $IM_B$ lies on the circumcircle of the triangle $IM_BM_C$.
2014 China Team Selection Test, 4
Given circle $O$ with radius $R$, the inscribed triangle $ABC$ is an acute scalene triangle, where $AB$ is the largest side. $AH_A, BH_B,CH_C$ are heights on $BC,CA,AB$. Let $D$ be the symmetric point of $H_A$ with respect to $H_BH_C$, $E$ be the symmetric point of $H_B$ with respect to $H_AH_C$. $P$ is the intersection of $AD,BE$, $H$ is the orthocentre of $\triangle ABC$. Prove: $OP\cdot OH$ is fixed, and find this value in terms of $R$.
(Edited)
2007 Junior Balkan Team Selection Tests - Romania, 3
Let $ABC$ be a right triangle with $A = 90^{\circ}$ and $D \in (AC)$. Denote by $E$ the reflection of $A$ in the line $BD$ and $F$ the intersection point of $CE$ with the perpendicular in $D$ to $BC$. Prove that $AF, DE$ and $BC$ are concurrent.
2010 IMO Shortlist, 1
Let $ABC$ be an acute triangle with $D, E, F$ the feet of the altitudes lying on $BC, CA, AB$ respectively. One of the intersection points of the line $EF$ and the circumcircle is $P.$ The lines $BP$ and $DF$ meet at point $Q.$ Prove that $AP = AQ.$
[i]Proposed by Christopher Bradley, United Kingdom[/i]
1981 Spain Mathematical Olympiad, 6
Prove that the transformation product of the symmetry of center $(0, 0)$ with the symmetry of the axis, with the line of equation $x = y + 1$, can be expressed as a product of an axis symmetry the line $e$ by a translation of vector $\overrightarrow{v}$, with $e$ parallel to $\overrightarrow{v}$, .
Determine a line $e$ and a vector $\overrightarrow{v}$, that meet the indicated conditions. have to be unique $e$ and $\overrightarrow{v}$,?