Found problems: 1581
2003 Iran MO (3rd Round), 6
let the incircle of a triangle ABC touch BC,AC,AB at A1,B1,C1 respectively. M and N are the midpoints of AB1 and AC1 respectively. MN meets A1C1 at T . draw two tangents TP and TQ through T to incircle. PQ meets MN at L and B1C1 meets PQ at K . assume I is the center of the incircle .
prove IK is parallel to AL
2007 Iran Team Selection Test, 3
Let $P$ be a point in a square whose side are mirror. A ray of light comes from $P$ and with slope $\alpha$. We know that this ray of light never arrives to a vertex. We make an infinite sequence of $0,1$. After each contact of light ray with a horizontal side, we put $0$, and after each contact with a vertical side, we put $1$. For each $n\geq 1$, let $B_{n}$ be set of all blocks of length $n$, in this sequence.
a) Prove that $B_{n}$ does not depend on location of $P$.
b) Prove that if $\frac{\alpha}{\pi}$ is irrational, then $|B_{n}|=n+1$.
2009 All-Russian Olympiad, 6
There are $ k$ rooks on a $ 10 \times 10$ chessboard. We mark all the squares that at least one rook can capture (we consider the square where the rook stands as captured by the rook). What is the maximum value of $ k$ so that the following holds for some arrangement of $ k$ rooks: after removing any rook from the chessboard, there is at least one marked square not captured by any of the remaining rooks.
1962 Czech and Slovak Olympiad III A, 4
Consider a circle $k$ with center $S$ and radius $r$. Let a point $A\neq S$ be given with $SA=d<r$. Consider a light ray emitted at point $A$, reflected at point $B\in k$, further reflected in point $C\in k$, which then passes through the original point $A$. Compute the sinus of convex angle $SAB$ in terms of $d,r$ and discuss conditions of solvability.
2012 Online Math Open Problems, 16
Let $ABC$ be a triangle with $AB = 4024$, $AC = 4024$, and $BC=2012$. The reflection of line $AC$ over line $AB$ meets the circumcircle of $\triangle{ABC}$ at a point $D\ne A$. Find the length of segment $CD$.
[i]Ray Li.[/i]
1995 AIME Problems, 3
Starting at $(0,0),$ an object moves in the coordinate plane via a sequence of steps, each of length one. Each step is left, right, up, or down, all four equally likely. Let $p$ be the probability that the object reaches $(2,2)$ in six or fewer steps. Given that $p$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$
1985 All Soviet Union Mathematical Olympiad, 399
Given a straight line $\ell$ and the point $O$ out of the line. Prove that it is possible to move an arbitrary point $A$ in the same plane to the $O$ point, using only rotations around $O$ and symmetry with respect to the $\ell$.
2012 Today's Calculation Of Integral, 782
Let $C$ be the part of the graph $y=\frac{1}{x}\ (x>0)$. Take a point $P\left(t,\ \frac{1}{t}\right)\ (t>0)$ on $C$.
(i) Find the equation of the tangent $l$ at the point $A(1,\ 1)$ on the curve $C$.
(ii) Let $m$ be the line passing through the point $P$ and parallel to $l$. Denote $Q$ be the intersection point of the line $m$ and the curve $C$ other than $P$. Find the coordinate of $Q$.
(iii) Express the area $S$ of the part bounded by two line segments $OP,\ OQ$ and the curve $C$ for the origin $O$ in terms of $t$.
(iv) Express the volume $V$ of the solid generated by a rotation of the part enclosed by two lines passing through the point $P$ and pararell to the $y$-axis and passing through the point $Q$ and pararell to $y$-axis, the curve $C$ and the $x$-axis in terms of $t$.
(v) $\lim_{t\rightarrow 1-0} \frac{S}{V}.$
2009 Korea Junior Math Olympiad, 2
In an acute triangle $\triangle ABC$, let $A',B',C'$ be the reflection of $A,B,C$ with respect to $BC,CA,AB$. Let $D = B'C \cap BC'$, $E = CA' \cap C'A$, $F = A'B \cap AB'$. Prove that $AD,BE,CF$ are concurrent
1998 Korea Junior Math Olympiad, 3
$O$ is the circumcenter of $ABC$, and $H$ is the orthocenter of $ABC$. If $D$ is a midpoint of $AC$ and $E$ is the intersection of $BO$ and $ABC$'s circumcircle not $B$, show that three points $H, D, E$ are collinear.
1970 Czech and Slovak Olympiad III A, 5
Let a real number $k$ and points $S,A,SA=1$ in plane be given. Denote $A'$ the image of $A$ under rotation by an oriented angle $\varphi$ with respect to center $S$. Similarly, let $A''$ be the image of $A'$ under homothety with the factor $\frac{1}{\cos\varphi-k\sin\varphi}$ with respect to center $S.$ Denote the locus \[\ell=\bigl\{A''\mid\varphi\in(-\pi,\pi],\cos\varphi-k\sin\varphi\neq0\bigr\}.\] Show that $\ell$ is a line containing $A.$
2003 Turkey Team Selection Test, 5
Let $A$ be a point on a circle with center $O$ and $B$ be the midpoint of $[OA]$. Let $C$ and $D$ be points on the circle such that they lie on the same side of the line $OA$ and $\widehat{CBO} = \widehat{DBA}$. Show that the reflection of the midpoint of $[CD]$ over $B$ lies on the circle.
2011 Philippine MO, 2
In triangle $ABC$, let $X$ and $Y$ be the midpoints of $AB$ and $AC$, respectively. On segment $BC$, there is a point $D$, different from its midpoint, such that $\angle{XDY}=\angle{BAC}$. Prove that $AD\perp BC$.
2012 Korea National Olympiad, 2
Let $ w $ be the incircle of triangle $ ABC $. Segments $ BC, CA $ meet with $ w $ at points $ D, E$. A line passing through $ B $ and parallel to $ DE $ meets $ w $ at $ F $ and $ G $. ($ F $ is nearer to $ B $ than $ G $.) Line $ CG $ meets $ w $ at $ H ( \ne G ) $. A line passing through $ G $ and parallel to $ EH $ meets with line $ AC $ at $ I $. Line $ IF $ meets with circle $ w $ at $ J (\ne F ) $. Lines $ CJ $ and $ EG $ meets at $ K $. Let $ l $ be the line passing through $ K $ and parallel to $ JD $. Prove that $ l, IF, ED $ meet at one point.
2011 AIME Problems, 8
Let $z_1,z_2,z_3,\dots,z_{12}$ be the 12 zeroes of the polynomial $z^{12}-2^{36}$. For each $j$, let $w_j$ be one of $z_j$ or $i z_j$. Then the maximum possible value of the real part of $\displaystyle\sum_{j=1}^{12} w_j$ can be written as $m+\sqrt{n}$ where $m$ and $n$ are positive integers. Find $m+n$.
2003 AIME Problems, 15
In $\triangle ABC$, $AB = 360$, $BC = 507$, and $CA = 780$. Let $M$ be the midpoint of $\overline{CA}$, and let $D$ be the point on $\overline{CA}$ such that $\overline{BD}$ bisects angle $ABC$. Let $F$ be the point on $\overline{BC}$ such that $\overline{DF} \perp \overline{BD}$. Suppose that $\overline{DF}$ meets $\overline{BM}$ at $E$. The ratio $DE: EF$ can be written in the form $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
2010 Today's Calculation Of Integral, 576
For a function $ f(x)\equal{}(\ln x)^2\plus{}2\ln x$, let $ C$ be the curve $ y\equal{}f(x)$. Denote $ A(a,\ f(a)),\ B(b,\ f(b))\ (a<b)$ the points of tangency of two tangents drawn from the origin $ O$ to $ C$ and the curve $ C$. Answer the following questions.
(1) Examine the increase and decrease, extremal value and inflection point , then draw the approximate garph of the curve $ C$.
(2) Find the values of $ a,\ b$.
(3) Find the volume by a rotation of the figure bounded by the part from the point $ A$ to the point $ B$ and line segments $ OA,\ OB$ around the $ y$-axis.
2024 Canada National Olympiad, 1
Let $ABC$ be a triangle with incenter $I$. Suppose the reflection of $AB$ across $CI$ and the reflection of $AC$ across $BI$ intersect at a point $X$. Prove that $XI$ is perpendicular to $BC$.
2007 Princeton University Math Competition, 6
Triangle $ABC$ has $AC = 3$, $BC = 5$, $AB = 7$. A circle is drawn internally tangent to the circumcircle of $ABC$ at $C$, and tangent to $AB$. Let $D$ be its point of tangency with $AB$. Find $BD - DA$.
[asy]
/* File unicodetex not found. */
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(6cm);
real labelscalefactor = 2.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.5, xmax = 7.01, ymin = -3, ymax = 8.02; /* image dimensions */
/* draw figures */
draw(circle((1.37,2.54), 5.17));
draw((-2.62,-0.76)--(-3.53,4.2));
draw((-3.53,4.2)--(5.6,-0.44));
draw((5.6,-0.44)--(-2.62,-0.76));
draw(circle((-0.9,0.48), 2.12));
/* dots and labels */
dot((-2.62,-0.76),dotstyle);
label("$C$", (-2.46,-0.51), SW * labelscalefactor);
dot((-3.53,4.2),dotstyle);
label("$A$", (-3.36,4.46), NW * labelscalefactor);
dot((5.6,-0.44),dotstyle);
label("$B$", (5.77,-0.17), SE * labelscalefactor);
dot((0.08,2.37),dotstyle);
label("$D$", (0.24,2.61), SW * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
label("$7$",(-3.36,4.46)--(5.77,-0.17), NE * labelscalefactor);
label("$3$",(-3.36,4.46)--(-2.46,-0.51),SW * labelscalefactor);
label("$5$",(-2.46,-0.51)--(5.77,-0.17), SE * labelscalefactor);
/* end of picture */
[/asy]
2015 Argentina National Olympiad, 3
Consider the points $O = (0,0), A = (- 2,0)$ and $B = (0,2)$ in the coordinate plane. Let $E$ and $F$ be the midpoints of $OA$ and $OB$ respectively. We rotate the triangle $OEF$ with a center in $O$ clockwise until we obtain the triangle $OE'F'$ and, for each rotated position, let $P = (x, y)$ be the intersection of the lines $AE'$ and $BF'$. Find the maximum possible value of the $y$-coordinate of $P$.
2015 Turkey Junior National Olympiad, 4
Let $ABC$ be a triangle and $D$ be the midpoint of the segment $BC$. The circle that passes through $D$ and tangent to $AB$ at $B$, and the circle that passes through $D$ and tangent to $AC$ at $C$ intersect at $M\neq D$. Let $M'$ be the reflection of $M$ with respect to $BC$. Prove that $M'$ is on $AD$.
2012 Brazil National Olympiad, 2
$ABC$ is a non-isosceles triangle.
$T_A$ is the tangency point of incircle of $ABC$ in the side $BC$ (define $T_B$,$T_C$ analogously).
$I_A$ is the ex-center relative to the side BC (define $I_B$,$I_C$ analogously).
$X_A$ is the mid-point of $I_BI_C$ (define $X_B$,$X_C$ analogously).
Show that $X_AT_A$,$X_BT_B$,$X_CT_C$ meet in a common point, colinear with the incenter and circumcenter of $ABC$.
2006 China Team Selection Test, 1
The centre of the circumcircle of quadrilateral $ABCD$ is $O$ and $O$ is not on any of the sides of $ABCD$. $P=AC \cap BD$. The circumecentres of $\triangle{OAB}$, $\triangle{OBC}$, $\triangle{OCD}$ and $\triangle{ODA}$ are $O_1$, $O_2$, $O_3$ and $O_4$ respectively.
Prove that $O_1O_3$, $O_2O_4$ and $OP$ are concurrent.
2021 Caucasus Mathematical Olympiad, 4
In an acute triangle $ABC$ let $AH_a$ and $BH_b$ be altitudes. Let $H_aH_b$ intersect the circumcircle of $ABC$ at $P$ and $Q$. Let $A'$ be the reflection of $A$ in $BC$, and let $B'$ be the reflection of $B$ in $CA$. Prove that $A', B'$, $P$, $Q$ are concyclic.
2012 May Olympiad, 2
The vertices of two regular octagons are numbered from $1$ to $8$, in some order, which may vary between both octagons (each octagon must have all numbers from $1$ to $8$). After this, one octagon is placed on top of the other so that every vertex from one octagon touches a vertex from the other. Then, the numbers of the vertices which are in contact are multiplied (i.e., if vertex $A$ has a number $x$ and is on top of vertex $A'$ that has a number $y$, then $x$ and $y$ are multiplied), and the $8$ products are then added.
Prove that, for any order in which the vertices may have been numbered, it is always possible to place one octagon on top of the other so that the final sum is at least $162$.
Note: the octagons can be rotated.