This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

2009 USAMO, 5

Trapezoid $ ABCD$, with $ \overline{AB}\parallel{}\overline{CD}$, is inscribed in circle $ \omega$ and point $ G$ lies inside triangle $ BCD$. Rays $ AG$ and $ BG$ meet $ \omega$ again at points $ P$ and $ Q$, respectively. Let the line through $ G$ parallel to $ \overline{AB}$ intersects $ \overline{BD}$ and $ \overline{BC}$ at points $ R$ and $ S$, respectively. Prove that quadrilateral $ PQRS$ is cyclic if and only if $ \overline{BG}$ bisects $ \angle CBD$.

2018 Canadian Mathematical Olympiad Qualification, 2

We call a pair of polygons, $p$ and $q$, [i]nesting[/i] if we can draw one inside the other, possibly after rotation and/or reflection; otherwise we call them [i]non-nesting[/i]. Let $p$ and $q$ be polygons. Prove that if we can find a polygon $r$, which is similar to $q$, such that $r$ and $p$ are non-nesting if and only if $p$ and $q$ are not similar.

2004 Iran MO (3rd Round), 9

Let $ABC$ be a triangle, and $O$ the center of its circumcircle. Let a line through the point $O$ intersect the lines $AB$ and $AC$ at the points $M$ and $N$, respectively. Denote by $S$ and $R$ the midpoints of the segments $BN$ and $CM$, respectively. Prove that $\measuredangle ROS=\measuredangle BAC$.

2012 Kazakhstan National Olympiad, 3

Line $PQ$ is tangent to the incircle of triangle $ABC$ in such a way that the points $P$ and $Q$ lie on the sides $AB$ and $AC$, respectively. On the sides $AB$ and $AC$ are selected points $M$ and $N$, respectively, so that $AM = BP$ and $AN = CQ$. Prove that all lines constructed in this manner $MN$ pass through one point

2008 Saint Petersburg Mathematical Olympiad, 6

A diagonal of a 100-gon is called good if it divides the 100-gon into two polygons each with an odd number of sides. A 100-gon was split into triangles with non-intersecting diagonals, exactly 49 of which are good. The triangles are colored into two colors such that no two triangles that border each other are colored with the same color. Prove that there is the same number of triangles colored with one color as with the other. Fresh translation; slightly reworded.

2011 USA Team Selection Test, 1

In an acute scalene triangle $ABC$, points $D,E,F$ lie on sides $BC, CA, AB$, respectively, such that $AD \perp BC, BE \perp CA, CF \perp AB$. Altitudes $AD, BE, CF$ meet at orthocenter $H$. Points $P$ and $Q$ lie on segment $EF$ such that $AP \perp EF$ and $HQ \perp EF$. Lines $DP$ and $QH$ intersect at point $R$. Compute $HQ/HR$. [i]Proposed by Zuming Feng[/i]

2014 Dutch IMO TST, 3

Let $H$ be the orthocentre of an acute triangle $ABC$. The line through $A$ perpendicular to $AC$ and the line through $B$ perpendicular to $BC$ intersect in $D$. The circle with centre $C$ through $H$ intersects the circumcircle of triangle $ABC$ in the points $E$ and $F$. Prove that $|DE| = |DF| = |AB|$.

2007 Romania Team Selection Test, 1

Let $ ABCD$ be a parallelogram with no angle equal to $ 60^{\textrm{o}}$. Find all pairs of points $ E, F$, in the plane of $ ABCD$, such that triangles $ AEB$ and $ BFC$ are isosceles, of basis $ AB$, respectively $ BC$, and triangle $ DEF$ is equilateral. [i]Valentin Vornicu[/i]

2019 Iran Team Selection Test, 4

Given an acute-angled triangle $ABC$ with orthocenter $H$. Reflection of nine-point circle about $AH$ intersects circumcircle at points $X$ and $Y$. Prove that $AH$ is the external bisector of $\angle XHY$. [i]Proposed by Mohammad Javad Shabani[/i]

2013 India IMO Training Camp, 2

In a triangle $ABC$ with $B = 90^\circ$, $D$ is a point on the segment $BC$ such that the inradii of triangles $ABD$ and $ADC$ are equal. If $\widehat{ADB} = \varphi$ then prove that $\tan^2 (\varphi/2) = \tan (C/2)$.

2005 Bulgaria Team Selection Test, 5

Let $ABC$, $AC \not= BC$, be an acute triangle with orthocenter $H$ and incenter $I$. The lines $CH$ and $CI$ meet the circumcircle of $\bigtriangleup ABC$ at points $D$ and $L$, respectively. Prove that $\angle CIH = 90^{\circ}$ if and only if $\angle IDL = 90^{\circ}$

2009 Singapore Team Selection Test, 1

Two circles are tangent to each other internally at a point $\ T $. Let the chord $\ AB $ of the larger circle be tangent to the smaller circle at a point $\ P $. Prove that the line $\ TP $ bisects $\ \angle ATB $.

2006 Germany Team Selection Test, 1

Let $A$, $B$, $C$, $D$, $E$, $F$ be six points on a circle such that $AE\parallel BD$ and $BC\parallel DF$. Let $X$ be the reflection of the point $D$ in the line $CE$. Prove that the distance from the point $X$ to the line $EF$ equals to the distance from the point $B$ to the line $AC$.

1990 Hungary-Israel Binational, 2

Let $ ABC$ be a triangle where $ \angle ACB\equal{}90^{\circ}$. Let $ D$ be the midpoint of $ BC$ and let $ E$, and $ F$ be points on $ AC$ such that $ CF\equal{}FE\equal{}EA$. The altitude from $ C$ to the hypotenuse $ AB$ is $ CG$, and the circumcentre of triangle $ AEG$ is $ H$. Prove that the triangles $ ABC$ and $ HDF$ are similar.

2006 Pan African, 6

Let $ABC$ be a right angled triangle at $A$. Denote $D$ the foot of the altitude through $A$ and $O_1, O_2$ the incentres of triangles $ADB$ and $ADC$. The circle with centre $A$ and radius $AD$ cuts $AB$ in $K$ and $AC$ in $L$. Show that $O_1, O_2, K$ and $L$ are on a line.

2012 USAMO, 5

Let $P$ be a point in the plane of $\triangle ABC$, and $\gamma$ a line passing through $P$. Let $A', B', C'$ be the points where the reflections of lines $PA, PB, PC$ with respect to $\gamma$ intersect lines $BC, AC, AB$ respectively. Prove that $A', B', C'$ are collinear.

2012 AMC 10, 23

Adam, Benin, Chiang, Deshawn, Esther, and Fiona have internet accounts. Some, but not all, of them are internet friends with each other, and none of them has an internet friend outside this group. Each of them has the same number of internet friends. In how many different ways can this happen? $ \textbf{(A)}\ 60 \qquad\textbf{(B)}\ 170 \qquad\textbf{(C)}\ 290 \qquad\textbf{(D)}\ 320 \qquad\textbf{(E)}\ 660 $

2012 Romania National Olympiad, 2

[color=darkred]Find all functions $f:\mathbb{R}\to\mathbb{R}$ with the following property: for any open bounded interval $I$, the set $f(I)$ is an open interval having the same length with $I$ .[/color]

2006 Tuymaada Olympiad, 3

A line $d$ is given in the plane. Let $B\in d$ and $A$ another point, not on $d$, and such that $AB$ is not perpendicular on $d$. Let $\omega$ be a variable circle touching $d$ at $B$ and letting $A$ outside, and $X$ and $Y$ the points on $\omega$ such that $AX$ and $AY$ are tangent to the circle. Prove that the line $XY$ passes through a fixed point. [i]Proposed by F. Bakharev [/i]

2006 Iran MO (3rd Round), 6

Assume that $C$ is a convex subset of $\mathbb R^{d}$. Suppose that $C_{1},C_{2},\dots,C_{n}$ are translations of $C$ that $C_{i}\cap C\neq\emptyset$ but $C_{i}\cap C_{j}=\emptyset$. Prove that \[n\leq 3^{d}-1\] Prove that $3^{d}-1$ is the best bound. P.S. In the exam problem was given for $n=3$.

2013 Harvard-MIT Mathematics Tournament, 35

Let $P$ be the number of ways to partition $2013$ into an ordered tuple of prime numbers. What is $\log_2 (P)$? If your answer is $A$ and the correct answer is $C$, then your score on this problem will be $\left\lfloor\frac{125}2\left(\min\left(\frac CA,\frac AC\right)-\frac35\right)\right\rfloor$ or zero, whichever is larger.

2010 Contests, 3

Prove that there exists a set $S$ of lines in the three dimensional space satisfying the following conditions: $i)$ For each point $P$ in the space, there exist a unique line of $S$ containing $P$. $ii)$ There are no two lines of $S$ which are parallel.

2013 Hong kong National Olympiad, 4

In a chess tournament there are $n>2$ players. Every two players play against each other exactly once. It is known that exactly $n$ games end as a tie. For any set $S$ of players, including $A$ and $B$, we say that $A$ [i]admires[/i] $B$ [i]in that set [/i]if i) $A$ does not beat $B$; or ii) there exists a sequence of players $C_1,C_2,\ldots,C_k$ in $S$, such that $A$ does not beat $C_1$, $C_k$ does not beat $B$, and $C_i$ does not beat $C_{i+1}$ for $1\le i\le k-1$. A set of four players is said to be [i]harmonic[/i] if each of the four players admires everyone else in the set. Find, in terms of $n$, the largest possible number of harmonic sets.

2007 Mongolian Mathematical Olympiad, Problem 3

Let $P$ be a point outside of the triangle $ABC$ in the plane of $ABC$. Prove that by using reflections $S_{AB}$, $S_{AC}$, and $S_{BC}$ across the lines $AB$, $AC$, and $BC$ one can shift point $P$ inside the triangle $ABC$.

1996 USAMO, 3

Let $ABC$ be a triangle. Prove that there is a line $\ell$ (in the plane of triangle $ABC$) such that the intersection of the interior of triangle $ABC$ and the interior of its reflection $A'B'C'$ in $\ell$ has area more than $\frac23$ the area of triangle $ABC$.