This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

2004 China Team Selection Test, 1

Points $D,E,F$ are on the sides $BC, CA$ and $AB$, respectively which satisfy $EF || BC$, $D_1$ is a point on $BC,$ Make $D_1E_1 || D_E, D_1F_1 || DF$ which intersect $AC$ and $AB$ at $E_1$ and $F_1$, respectively. Make $\bigtriangleup PBC \sim \bigtriangleup DEF$ such that $P$ and $A$ are on the same side of $BC.$ Prove that $E, E_1F_1, PD_1$ are concurrent. [color=red][Edit by Darij: See my post #4 below for a [b]possible correction[/b] of this problem. However, I am not sure that it is in fact the problem given at the TST... Does anyone have a reliable translation?][/color]

1992 China Team Selection Test, 2

A $(3n + 1) \times (3n + 1)$ table $(n \in \mathbb{N})$ is given. Prove that deleting any one of its squares yields a shape cuttable into pieces of the following form and its rotations: ''L" shape formed by cutting one square from a $2 \times 2$ squares.

2005 All-Russian Olympiad, 2

We have an acute-angled triangle $ABC$, and $AA',BB'$ are its altitudes. A point $D$ is chosen on the arc $ACB$ of the circumcircle of $ABC$. If $P=AA'\cap BD,Q=BB'\cap AD$, show that the midpoint of $PQ$ lies on $A'B'$.

2003 Balkan MO, 2

Let $ABC$ be a triangle, and let the tangent to the circumcircle of the triangle $ABC$ at $A$ meet the line $BC$ at $D$. The perpendicular to $BC$ at $B$ meets the perpendicular bisector of $AB$ at $E$. The perpendicular to $BC$ at $C$ meets the perpendicular bisector of $AC$ at $F$. Prove that the points $D$, $E$ and $F$ are collinear. [i]Valentin Vornicu[/i]

2003 Tournament Of Towns, 5

Is it possible to tile $2003 \times 2003$ board by $1 \times 2$ dominoes placed horizontally and $1 \times 3$ rectangles placed vertically?

1954 AMC 12/AHSME, 42

Consider the graphs of (1): $ y\equal{}x^2\minus{}\frac{1}{2}x\plus{}2$ and (2) $ y\equal{}x^2\plus{}\frac{1}{2}x\plus{}2$ on the same set of axis. These parabolas are exactly the same shape. Then: $ \textbf{(A)}\ \text{the graphs coincide.} \\ \textbf{(B)}\ \text{the graph of (1) is lower than the graph of (2).} \\ \textbf{(C)}\ \text{the graph of (1) is to the left of the graph of (2).} \\ \textbf{(D)}\ \text{the graph of (1) is to the right of the graph of (2).} \\ \textbf{(E)}\ \text{the graph of (1) is higher than the graph of (2).}$

1999 Brazil National Olympiad, 6

Given any triangle $ABC$, show how to construct $A'$ on the side $AB$, $B'$ on the side $BC$ and $C'$ on the side $CA$, such that $ABC$ and $A'B'C'$ are similar (with $\angle A = \angle A', \angle B = \angle B', \angle C = \angle C'$) and $A'B'C'$ has the least possible area.

KoMaL A Problems 2024/2025, A. 901

Let $A'B'C'$ denote the reflection of scalene and acute triangle $ABC$ across its Euler-line. Let $P$ be an arbitrary point of the nine-point circle of $ABC$. For every point $X$, let $p(X)$ denote the reflection of $X$ across $P$. [b]a)[/b] Let $e_{AB}$ denote the line connecting the orthogonal projection of $A$ to line $BB'$ and the orthogonal projection of $B$ to line $AA'$. Lines $e_{BC}$ and $e_{CA}$ are defined analogously. Prove that these three lines are concurrent (and denote their intersection by $K$). [b]b)[/b] Prove that there are two choices of $P$ such that lines $Ap(A')$, $Bp(B')$ and $Cp(C')$ are concurrent, and the four points $p(A)p(A')\cap BC$, $p(B)p(B')\cap CA$, $p(C)p(C')\cap AB$, and $K$ are collinear. [i]Proposed by Áron Bán-Szabó, Budapest[/i]

2013 Sharygin Geometry Olympiad, 19

a) The incircle of a triangle $ABC$ touches $AC$ and $AB$ at points $B_0$ and $C_0$ respectively. The bisectors of angles $B$ and $C$ meet the perpendicular bisector to the bisector $AL$ in points $Q$ and $P$ respectively. Prove that the lines $PC_0, QB_0$ and $BC$ concur. b) Let $AL$ be the bisector of a triangle $ABC$. Points $O_1$ and $O_2$ are the circumcenters of triangles $ABL$ and $ACL$ respectively. Points $B_1$ and $C_1$ are the projections of $C$ and $B$ to the bisectors of angles $B$ and $C$ respectively. Prove that the lines $O_1C_1, O_2B_1,$ and $BC$ concur. c) Prove that the two points obtained in pp. a) and b) coincide.

2005 Morocco TST, 4

A convex quadrilateral $ABCD$ has an incircle. In each corner a circle is inscribed that also externally touches the two circles inscribed in the adjacent corners. Show that at least two circles have the same size.

2014 France Team Selection Test, 2

Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.

2018 Bulgaria National Olympiad, 2.

Let $ABCD$ be a cyclic quadrilateral. Let $H_{1}$ be the orthocentre of triangle $ABC$. Point $A_{1}$ is the image of $A$ after reflection about $BH_{1}$. Point $B_{1}$ is the image of of $B$ after reflection about $AH_{1}$. Let $O_{1}$ be the circumcentre of $(A_{1}B_{1}H_{1})$. Let $H_{2}$ be the orthocentre of triangle $ABD$. Point $A_{2}$ is the image of $A$ after reflection about $BH_{2}$. Point $B_{2}$ is the image of of $B$ after reflection about $AH_{2}$. Let $O_{2}$ be the circumcentre of $(A_{2}B_{2}H_{2})$. Lets denote by $\ell_{AB}$ be the line through $O_{1}$ and $O_{2}$. $\ell_{AD}$ ,$\ell_{BC}$ ,$\ell_{CD}$ are defined analogously. Let $M=\ell_{AB} \cap \ell_{BC}$, $N=\ell_{BC} \cap \ell_{CD}$, $P=\ell_{CD} \cap \ell_{AD}$,$Q=\ell_{AD} \cap \ell_{AB}$. Prove that $MNPQ$ is cyclic.

1968 Czech and Slovak Olympiad III A, 3

Two segment $AB,CD$ of the same length are given in plane such that lines $AB,CD$ are not parallel. Consider a point $S$ with the following property: the image of segment $AB$ under point reflection with respect to $S$ is identical to the mirror-image of segment $CD$ with respect to some axis. Find the locus of all such points $S.$

2005 Turkey MO (2nd round), 3

Some of the $n + 1$ cities in a country (including the capital city) are connected by one-way or two-way airlines. No two cities are connected by both a one-way airline and a two-way airline, but there may be more than one two-way airline between two cities. If $d_A$ denotes the number of airlines from a city $A$, then $d_A \le n$ for any city $A$ other than the capital city and $d_A + d_B \le n$ for any two cities $A$ and $B$ other than the capital city which are not connected by a two-way airline. Every airline has a return, possibly consisting of several connected flights. Find the largest possible number of two-way airlines and all configurations of airlines for which this largest number is attained.

2004 Moldova Team Selection Test, 7

Let $ABC$ be a triangle, let $O$ be its circumcenter, and let $H$ be its orthocenter. Let $P$ be a point on the segment $OH$. Prove that $6r\leq PA+PB+PC\leq 3R$, where $r$ is the inradius and $R$ the circumradius of triangle $ABC$. [b]Moderator edit:[/b] This is true only if the point $P$ lies inside the triangle $ABC$. (Of course, this is always fulfilled if triangle $ABC$ is acute-angled, since in this case the segment $OH$ completely lies inside the triangle $ABC$; but if triangle $ABC$ is obtuse-angled, then the condition about $P$ lying inside the triangle $ABC$ is really necessary.)

2012 Nordic, 2

Given a triangle $ABC$, let $P$ lie on the circumcircle of the triangle and be the midpoint of the arc $BC$ which does not contain $A$. Draw a straight line $l$ through $P$ so that $l$ is parallel to $AB$. Denote by $k$ the circle which passes through $B$, and is tangent to $l$ at the point $P$. Let $Q$ be the second point of intersection of $k$ and the line $AB$ (if there is no second point of intersection, choose $Q = B$). Prove that $AQ = AC$.

1992 Dutch Mathematical Olympiad, 3

Consider the configuration of six squares as shown on the picture. Prove that the sum of the area of the three outer squares ($ I,II$ and $ III$) equals three times the sum of the areas of the three inner squares ($ IV,V$ and $ VI$).

1985 Federal Competition For Advanced Students, P2, 3

A line meets the lines containing sides $ BC,CA,AB$ of a triangle $ ABC$ at $ A_1,B_1,C_1,$ respectively. Points $ A_2,B_2,C_2$ are symmetric to $ A_1,B_1,C_1$ with respect to the midpoints of $ BC,CA,AB,$ respectively. Prove that $ A_2,B_2,$ and $ C_2$ are collinear.

1974 Czech and Slovak Olympiad III A, 6

Let a unit square $\mathcal D$ be given in the plane. For any point $X$ in the plane denote $\mathcal D_X$ the image of $\mathcal D$ in rotation with respect to origin $X$ by $+90^\circ.$ Find the locus of all $X$ such that the area of union $\mathcal D\cup\mathcal D_X$ is at most 1.5.

2005 China Western Mathematical Olympiad, 5

Circles $C(O_1)$ and $C(O_2)$ intersect at points $A$, $B$. $CD$ passing through point $O_1$ intersects $C(O_1)$ at point $D$ and tangents $C(O_2)$ at point $C$. $AC$ tangents $C(O_1)$ at $A$. Draw $AE \bot CD$, and $AE$ intersects $C(O_1)$ at $E$. Draw $AF \bot DE$, and $AF$ intersects $DE$ at $F$. Prove that $BD$ bisects $AF$.

2014 Dutch IMO TST, 2

Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.

IV Soros Olympiad 1997 - 98 (Russia), 9.5

Given triangle $ABC$. Find the locus of points $M$ such that there is a rotation with center at $M$ that takes $C$ to a certain point on side $AB$.

1996 Moldova Team Selection Test, 10

Given an equilateral triangle $ABC$ and a point $M$ in the plane ($ABC$). Let $A', B', C'$ be respectively the symmetric through $M$ of $A, B, C$. [b]I.[/b] Prove that there exists a unique point $P$ equidistant from $A$ and $B'$, from $B$ and $C'$ and from $C$ and $A'$. [b]II.[/b] Let $D$ be the midpoint of the side $AB$. When $M$ varies ($M$ does not coincide with $D$), prove that the circumcircle of triangle $MNP$ ($N$ is the intersection of the line $DM$ and $AP$) pass through a fixed point.

1999 Bulgaria National Olympiad, 2

The vertices A,B,C of an acute-angled triangle ABC lie on the sides B1C1, C1A1, A1B1 respectively of a triangle A1B1C1 similar to the triangle ABC (∠A = ∠A1, etc.). Prove that the orthocenters of triangles ABC and A1B1C1 are equidistant from the circumcenter of △ABC.

EGMO 2017, 6

Let $ABC$ be an acute-angled triangle in which no two sides have the same length. The reflections of the centroid $G$ and the circumcentre $O$ of $ABC$ in its sides $BC,CA,AB$ are denoted by $G_1,G_2,G_3$ and $O_1,O_2,O_3$, respectively. Show that the circumcircles of triangles $G_1G_2C$, $G_1G_3B$, $G_2G_3A$, $O_1O_2C$, $O_1O_3B$, $O_2O_3A$ and $ABC$ have a common point. [i]The centroid of a triangle is the intersection point of the three medians. A median is a line connecting a vertex of the triangle to the midpoint of the opposite side.[/i]