This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

1994 AIME Problems, 8

The points $(0,0),$ $(a,11)$, and $(b,37)$ are the vertices of an equilateral triangle. Find the value of $ab$.

2006 AIME Problems, 12

Equilateral $\triangle ABC$ is inscribed in a circle of radius 2. Extend $\overline{AB}$ through $B$ to point $D$ so that $AD=13$, and extend $\overline{AC}$ through $C$ to point $E$ so that $AE=11$. Through $D$, draw a line $l_1$ parallel to $\overline{AE}$, and through $E$, draw a line ${l}_2$ parallel to $\overline{AD}$. Let $F$ be the intersection of ${l}_1$ and ${l}_2$. Let $G$ be the point on the circle that is collinear with $A$ and $F$ and distinct from $A$. Given that the area of $\triangle CBG$ can be expressed in the form $\frac{p\sqrt{q}}{r}$, where $p$, $q$, and $r$ are positive integers, $p$ and $r$ are relatively prime, and $q$ is not divisible by the square of any prime, find $p+q+r$.

2010 Sharygin Geometry Olympiad, 12

Let $AC$ be the greatest leg of a right triangle $ABC,$ and $CH$ be the altitude to its hypotenuse. The circle of radius $CH$ centered at $H$ intersects $AC$ in point $M.$ Let a point $B'$ be the reflection of $B$ with respect to the point $H.$ The perpendicular to $AB$ erected at $B'$ meets the circle in a point $K$. Prove that [b]a)[/b] $B'M \parallel BC$ [b]b)[/b] $AK$ is tangent to the circle.

2003 Balkan MO, 2

Let $ABC$ be a triangle, and let the tangent to the circumcircle of the triangle $ABC$ at $A$ meet the line $BC$ at $D$. The perpendicular to $BC$ at $B$ meets the perpendicular bisector of $AB$ at $E$. The perpendicular to $BC$ at $C$ meets the perpendicular bisector of $AC$ at $F$. Prove that the points $D$, $E$ and $F$ are collinear. [i]Valentin Vornicu[/i]

2002 France Team Selection Test, 1

In an acute-angled triangle $ABC$, $A_1$ and $B_1$ are the feet of the altitudes from $A$ and $B$ respectively, and $M$ is the midpoint of $AB$. a) Prove that $MA_1$ is tangent to the circumcircle of triangle $A_1B_1C$. b) Prove that the circumcircles of triangles $A_1B_1C,BMA_1$, and $AMB_1$ have a common point.

2006 Germany Team Selection Test, 1

Let $A$, $B$, $C$, $D$, $E$, $F$ be six points on a circle such that $AE\parallel BD$ and $BC\parallel DF$. Let $X$ be the reflection of the point $D$ in the line $CE$. Prove that the distance from the point $X$ to the line $EF$ equals to the distance from the point $B$ to the line $AC$.

1980 IMO, 16

In a pentagon $\Pi$ in the plane, $M_1,...M_5$ are the midpoints of the consecutive sides. $Z_i$ is the centroid of the triangle $M_{i} M_{i+1} M_{i+3}$, where $i=1,2...5$ and it is understood that $M_{j\cdot 5}=M_j$ Given pentagon $Z_{1}Z_{2}Z_{3}Z_{4}Z_{5}$, determine the original pentagon $\Pi$.

2013 India IMO Training Camp, 2

In a triangle $ABC$, with $\widehat{A} > 90^\circ$, let $O$ and $H$ denote its circumcenter and orthocenter, respectively. Let $K$ be the reflection of $H$ with respect to $A$. Prove that $K, O$ and $C$ are collinear if and only if $\widehat{A} - \widehat{B} = 90^\circ$.

2014 National Olympiad First Round, 21

Let $ABCD$ be a trapezoid such that side $[AB]$ and side $[CD]$ are perpendicular to side $[BC]$. Let $E$ be a point on side $[BC]$ such that $\triangle AED$ is equilateral. If $|AB|=7$ and $|CD|=5$, what is the area of trapezoid $ABCD$? $ \textbf{(A)}\ 27\sqrt{3} \qquad\textbf{(B)}\ 42 \qquad\textbf{(C)}\ 24\sqrt{3} \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 36 $

2009 Sharygin Geometry Olympiad, 4

Let $ P$ and $ Q$ be the common points of two circles. The ray with origin $ Q$ reflects from the first circle in points $ A_1$, $ A_2$,$ \ldots$ according to the rule ''the angle of incidence is equal to the angle of reflection''. Another ray with origin $ Q$ reflects from the second circle in the points $ B_1$, $ B_2$,$ \ldots$ in the same manner. Points $ A_1$, $ B_1$ and $ P$ occurred to be collinear. Prove that all lines $ A_iB_i$ pass through P.

2014 Baltic Way, 12

Triangle $ABC$ is given. Let $M$ be the midpoint of the segment $AB$ and $T$ be the midpoint of the arc $BC$ not containing $A$ of the circumcircle of $ABC.$ The point $K$ inside the triangle $ABC$ is such that $MATK$ is an isosceles trapezoid with $AT\parallel MK.$ Show that $AK = KC.$

2011 China Team Selection Test, 1

Let $AA',BB',CC'$ be three diameters of the circumcircle of an acute triangle $ABC$. Let $P$ be an arbitrary point in the interior of $\triangle ABC$, and let $D,E,F$ be the orthogonal projection of $P$ on $BC,CA,AB$, respectively. Let $X$ be the point such that $D$ is the midpoint of $A'X$, let $Y$ be the point such that $E$ is the midpoint of $B'Y$, and similarly let $Z$ be the point such that $F$ is the midpoint of $C'Z$. Prove that triangle $XYZ$ is similar to triangle $ABC$.

2022 AMC 8 -, 4

The letter [b]M[/b] in the figure below is first reflected over the line $q$ and then reflected over the line $p$. What is the resulting image? [asy] // pog diagram usepackage("newtxtext"); size(3cm); draw((-1,0)--(1,0)); draw((0,-1)--(0,1)); label("$\textbf{\textsf{M}}$",(0.25,0.6)); draw((-0.8,-0.8)--(0.8,0.8),linewidth(1.1)); label("$p$", (-1,0),NE); label("$q$", (-0.75,-0.75), N*1.5); [/asy] [asy] // pog diagram usepackage("newtxtext"); size(12.5cm); draw((-1,0)--(1,0)); draw((0,-1)--(0,1)); label(rotate(90)*"$\textbf{\textsf{M}}$",(0.6,-0.25)); draw((-0.8,-0.8)--(0.8,0.8),linewidth(1.1)); label("$\textbf{(A)}$",(-1,1),W); draw((2,0)--(4,0)); draw((3,-1)--(3,1)); label(rotate(270)*"$\textbf{\textsf{M}}$",(2.8,0.7)); draw((2.2,-0.8)--(3.8,0.8),linewidth(1.1)); label("$\textbf{(B)}$",(2,1),W); draw((5,0)--(7,0)); draw((6,-1)--(6,1)); label(rotate(90)*"$\textbf{\textsf{M}}$",(5.4,0.2)); draw((5.2,-0.8)--(6.8,0.8),linewidth(1.1)); label("$\textbf{(C)}$",(5,1),W); draw((-1,-2.5)--(1,-2.5)); draw((0,-3.5)--(0,-1.5)); label(rotate(180)*"$\textbf{\textsf{M}}$",(-0.25,-3.1)); draw((-0.8,-3.3)--(0.8,-1.7),linewidth(1.1)); label("$\textbf{(D)}$",(-1,-1.5),W); draw((2,-2.5)--(4,-2.5)); draw((3,-3.5)--(3,-1.5)); label(rotate(270)*"$\textbf{\textsf{M}}$",(3.6,-2.75)); draw((2.2,-3.3)--(3.8,-1.7),linewidth(1.1)); label("$\textbf{(E)}$",(2,-1.5),W); [/asy]

2004 Tournament Of Towns, 1

Let us call a triangle rational if each of its angles is a rational number when measured in degrees. Let us call a point inside triangle rational if joining it to the three vertices of the triangle we get three rational triangles. Show that any acute rational triangle contains at least three distinct rational points.

2008 Iran MO (3rd Round), 2

Let $ l_a,l_b,l_c$ be three parallel lines passing through $ A,B,C$ respectively. Let $ l_a'$ be reflection of $ l_a$ into $ BC$. $ l_b'$ and $ l_c'$ are defined similarly. Prove that $ l_a',l_b',l_c'$ are concurrent if and only if $ l_a$ is parallel to Euler line of triangle $ ABC$.

2013 Brazil National Olympiad, 6

The incircle of triangle $ABC$ touches sides $BC, CA$ and $AB$ at points $D, E$ and $F$, respectively. Let $P$ be the intersection of lines $AD$ and $BE$. The reflections of $P$ with respect to $EF, FD$ and $DE$ are $X,Y$ and $Z$, respectively. Prove that lines $AX, BY$ and $CZ$ are concurrent at a point on line $IO$, where $I$ and $O$ are the incenter and circumcenter of triangle $ABC$.

2014 AIME Problems, 8

Circle $C$ with radius $2$ has diameter $\overline{AB}$. Circle $D$ is internally tangent to circle $C$ at $A$. Circle $E$ is internally tangent to circle $C,$ externally tangent to circle $D,$ and tangent to $\overline{AB}$. The radius of circle $D$ is three times the radius of circle $E$ and can be written in the form $\sqrt{m} - n,$ where $m$ and $n$ are positive integers. Find $m+n$.

2008 Sharygin Geometry Olympiad, 7

(A.Zaslavsky) The circumradius of triangle $ ABC$ is equal to $ R$. Another circle with the same radius passes through the orthocenter $ H$ of this triangle and intersect its circumcirle in points $ X$, $ Y$. Point $ Z$ is the fourth vertex of parallelogram $ CXZY$. Find the circumradius of triangle $ ABZ$.

2004 All-Russian Olympiad, 1

Each grid point of a cartesian plane is colored with one of three colors, whereby all three colors are used. Show that one can always find a right-angled triangle, whose three vertices have pairwise different colors.

2013 Romanian Masters In Mathematics, 3

Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$. The lines $AB$ and $CD$ meet at $P$, the lines $AD$ and $BC$ meet at $Q$, and the diagonals $AC$ and $BD$ meet at $R$. Let $M$ be the midpoint of the segment $PQ$, and let $K$ be the common point of the segment $MR$ and the circle $\omega$. Prove that the circumcircle of the triangle $KPQ$ and $\omega$ are tangent to one another.

2019 Latvia Baltic Way TST, 12

Let $AX$, $AY$ be tangents to circle $\omega$ from point $A$. Le $B$, $C$ be points inside $AX$ and $AY$ respectively, such that perimeter of $\triangle ABC$ is equal to length of $AX$. $D$ is reflection of $A$ over $BC$. Prove that circumcircle $\triangle BDC$ and $\omega$ are tangent to each other.

2012 Romania National Olympiad, 1

[color=darkred]The altitude $[BH]$ dropped onto the hypotenuse of a triangle $ABC$ intersects the bisectors $[AD]$ and $[CE]$ at $Q$ and $P$ respectively. Prove that the line passing through the midpoints of the segments $[QD]$ and $[PE]$ is parallel to the line $AC$ .[/color]

2008 Gheorghe Vranceanu, 3

If the circumradius of any three consecutive vertices of a convex polygon is at most $ 1, $ show that the discs of radius $ 1 $ centered at each vertex cover the polygon and its interior.

2011 Rioplatense Mathematical Olympiad, Level 3, 2

Let $ABC$ an acute triangle and $H$ its orthocenter. Let $E$ and $F$ be the intersection of lines $BH$ and $CH$ with $AC$ and $AB$ respectively, and let $D$ be the intersection of lines $EF$ and $BC$. Let $\Gamma_1$ be the circumcircle of $AEF$, and $\Gamma_2$ the circumcircle of $BHC$. The line $AD$ intersects $\Gamma_1$ at point $I \neq A$. Let $J$ be the feet of the internal bisector of $\angle{BHC}$ and $M$ the midpoint of the arc $\stackrel{\frown}{BC}$ from $\Gamma_2$ that contains the point $H$. The line $MJ$ intersects $\Gamma_2$ at point $N \neq M$. Show that the triangles $EIF$ and $CNB$ are similar.

2011 Croatia Team Selection Test, 3

Triangle $ABC$ is given with its centroid $G$ and cicumcentre $O$ is such that $GO$ is perpendicular to $AG$. Let $A'$ be the second intersection of $AG$ with circumcircle of triangle $ABC$. Let $D$ be the intersection of lines $CA'$ and $AB$ and $E$ the intersection of lines $BA'$ and $AC$. Prove that the circumcentre of triangle $ADE$ is on the circumcircle of triangle $ABC$.