Found problems: 1581
2012 NIMO Problems, 8
Concentric circles $\Omega_1$ and $\Omega_2$ with radii $1$ and $100$, respectively, are drawn with center $O$. Points $A$ and $B$ are chosen independently at random on the circumferences of $\Omega_1$ and $\Omega_2$, respectively. Denote by $\ell$ the tangent line to $\Omega_1$ passing through $A$, and denote by $P$ the reflection of $B$ across $\ell$. Compute the expected value of $OP^2$.
[i]Proposed by Lewis Chen[/i]
2009 India IMO Training Camp, 1
Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$,
$ r$ being inradius.
2012 Iran MO (2nd Round), 3
The incircle of triangle $ABC$, is tangent to sides $BC,CA$ and $AB$ in $D,E$ and $F$ respectively. The reflection of $F$ with respect to $B$ and the reflection of $E$ with respect to $C$ are $T$ and $S$ respectively. Prove that the incenter of triangle $AST$ is inside or on the incircle of triangle $ABC$.
[i]Proposed by Mehdi E'tesami Fard[/i]
2013 F = Ma, 4
The sign shown below consists of two uniform legs attached by a frictionless hinge. The coefficient of friction between the ground and the legs is $\mu$. Which of the following gives the maximum value of $\theta$ such that the sign will not collapse?
$\textbf{(A) } \sin \theta = 2 \mu \\
\textbf{(B) } \sin \theta /2 = \mu / 2\\
\textbf{(C) } \tan \theta / 2 = \mu\\
\textbf{(D) } \tan \theta = 2 \mu \\
\textbf{(E) } \tan \theta / 2 = 2 \mu$
2014 India IMO Training Camp, 3
In a triangle $ABC$, points $X$ and $Y$ are on $BC$ and $CA$ respectively such that $CX=CY$,$AX$ is not perpendicular to $BC$ and $BY$ is not perpendicular to $CA$.Let $\Gamma$ be the circle with $C$ as centre and $CX$ as its radius.Find the angles of triangle $ABC$ given that the orthocentres of triangles $AXB$ and $AYB$ lie on $\Gamma$.
2012 EGMO, 7
Let $ABC$ be an acute-angled triangle with circumcircle $\Gamma$ and orthocentre $H$. Let $K$ be a point of $\Gamma$ on the other side of $BC$ from $A$. Let $L$ be the reflection of $K$ in the line $AB$, and let $M$ be the reflection of $K$ in the line $BC$. Let $E$ be the second point of intersection of $\Gamma $ with the circumcircle of triangle $BLM$.
Show that the lines $KH$, $EM$ and $BC$ are concurrent. (The orthocentre of a triangle is the point on all three of its altitudes.)
[i]Luxembourg (Pierre Haas)[/i]
2004 Romania Team Selection Test, 16
Three circles $\mathcal{K}_1$, $\mathcal{K}_2$, $\mathcal{K}_3$ of radii $R_1,R_2,R_3$ respectively, pass through the point $O$ and intersect two by two in $A,B,C$. The point $O$ lies inside the triangle $ABC$.
Let $A_1,B_1,C_1$ be the intersection points of the lines $AO,BO,CO$ with the sides $BC,CA,AB$ of the triangle $ABC$. Let $ \alpha = \frac {OA_1}{AA_1} $, $ \beta= \frac {OB_1}{BB_1} $ and $ \gamma = \frac {OC_1}{CC_1} $ and let $R$ be the circumradius of the triangle $ABC$. Prove that
\[ \alpha R_1 + \beta R_2 + \gamma R_3 \geq R. \]
2007 Kyiv Mathematical Festival, 2
The point $D$ at the side $AB$ of triangle $ABC$ is given. Construct points $E,F$ at sides $BC, AC$ respectively such that the midpoints of $DE$ and $DF$ are collinear with $B$ and the midpoints of $DE$ and $EF$ are collinear with $C.$
2010 Costa Rica - Final Round, 5
Let $C_1$ be a circle with center $O$ and let $B$ and $C$ be points in $C_1$ such that $BOC$ is an equilateral triangle. Let $D$ be the midpoint of the minor arc $BC$ of $C_1$. Let $C_2$ be the circle with center $C$ that passes through $B$ and $O$. Let $E$ be the second intersection of $C_1$ and $C_2$. The parallel to $DE$ through $B$ intersects $C_1$ for second time in $A$. Let $C_3$ be the circumcircle of triangle $AOC$. The second intersection of $C_2$ and $C_3$ is $F$. Show that $BE$ and $BF$ trisect the angle $\angle ABC$.
1984 Canada National Olympiad, 2
Alice and Bob are in a hardware store. The store sells coloured sleeves that fit over keys to distinguish them. The following conversation takes place:
[color=#0000FF]Alice:[/color] Are you going to cover your keys?
[color=#FF0000]Bob:[/color] I would like to, but there are only $7$ colours and I have $8$ keys.
[color=#0000FF]Alice:[/color] Yes, but you could always distinguish a key by noticing that the red key next to the green key was different from the red key next to the blue key.
[color=#FF0000]Bob:[/color] You must be careful what you mean by "[i]next to[/i]" or "[i]three keys over from[/i]" since you can turn the key ring over and the keys are arranged in a circle.
[color=#0000FF]Alice:[/color] Even so, you don't need $8$ colours.
[b]Problem:[/b] What is the smallest number of colours needed to distinguish $n$ keys if all the keys are to be covered.
2012 USAMTS Problems, 3
In quadrilateral $ABCD$, $\angle DAB=\angle ABC=110^{\circ}$, $\angle BCD=35^{\circ}$, $\angle CDA=105^{\circ}$, and $AC$ bisects $\angle DAB$. Find $\angle ABD$.
2010 Canada National Olympiad, 1
For all natural $n$, an $n$-staircase is a figure consisting of unit squares, with one square in the first row, two squares in the second row, and so on, up to $n$ squares in the $n^{th}$ row, such that all the left-most squares in each row are aligned vertically.
Let $f(n)$ denote the minimum number of square tiles requires to tile the $n$-staircase, where the side lengths of the square tiles can be any natural number. e.g. $f(2)=3$ and $f(4)=7$.
(a) Find all $n$ such that $f(n)=n$.
(b) Find all $n$ such that $f(n) = n+1$.
2009 Turkey MO (2nd round), 2
Let $\Gamma$ be the circumcircle of a triangle $ABC,$ and let $D$ and $E$ be two points different from the vertices on the sides $AB$ and $AC,$ respectively. Let $A'$ be the second point where $\Gamma$ intersects the bisector of the angle $BAC,$ and let $P$ and $Q$ be the second points where $\Gamma$ intersects the lines $A'D$ and $A'E,$ respectively. Let $R$ and $S$ be the second points of intersection of the lines $AA'$ and the circumcircles of the triangles $APD$ and $AQE,$ respectively.
Show that the lines $DS, \: ER$ and the tangent line to $\Gamma$ through $A$ are concurrent.
2011 ELMO Shortlist, 6
Let $Q(x)$ be a polynomial with integer coefficients. Prove that there exists a polynomial $P(x)$ with integer coefficients such that for every integer $n\ge\deg{Q}$,
\[\sum_{i=0}^{n}\frac{!i P(i)}{i!(n-i)!} = Q(n),\]where $!i$ denotes the number of derangements (permutations with no fixed points) of $1,2,\ldots,i$.
[i]Calvin Deng.[/i]
1985 IMO Longlists, 72
Construct a triangle $ABC$ given the side $AB$ and the distance $OH$ from the circumcenter $O$ to the orthocenter $H$, assuming that $OH$ and $AB$ are parallel.
2012 Turkey Team Selection Test, 2
In an acute triangle $ABC,$ let $D$ be a point on the side $BC.$ Let $M_1, M_2, M_3, M_4, M_5$ be the midpoints of the line segments $AD, AB, AC, BD, CD,$ respectively and $O_1, O_2, O_3, O_4$ be the circumcenters of triangles $ABD, ACD, M_1M_2M_4, M_1M_3M_5,$ respectively. If $S$ and $T$ are midpoints of the line segments $AO_1$ and $AO_2,$ respectively, prove that $SO_3O_4T$ is an isosceles trapezoid.
1991 IMTS, 4
Let $n$ points with integer coordinates be given in the $xy$-plane. What is the minimum value of $n$ which will ensure that three of the points are the vertices of a triangel with integer (possibly, 0) area?
2005 Bulgaria National Olympiad, 4
Let $ABC$ be a triangle with $AC\neq BC$, and let $A^{\prime }B^{\prime }C$ be a triangle obtained from $ABC$ after some rotation centered at $C$. Let $M,E,F$ be the midpoints of the segments $BA^{\prime },AC$ and $CB^{\prime }$ respectively. If $EM=FM$, find $\widehat{EMF}$.
2006 International Zhautykov Olympiad, 3
Let $ ABCDEF$ be a convex hexagon such that $ AD \equal{} BC \plus{} EF$, $ BE \equal{} AF \plus{} CD$, $ CF \equal{} DE \plus{} AB$. Prove that:
\[ \frac {AB}{DE} \equal{} \frac {CD}{AF} \equal{} \frac {EF}{BC}.
\]
2012 China National Olympiad, 2
Let $p$ be a prime. We arrange the numbers in ${\{1,2,\ldots ,p^2} \}$ as a $p \times p$ matrix $A = ( a_{ij} )$. Next we can select any row or column and add $1$ to every number in it, or subtract $1$ from every number in it. We call the arrangement [i]good[/i] if we can change every number of the matrix to $0$ in a finite number of such moves. How many good arrangements are there?
2009 Today's Calculation Of Integral, 467
Let the curve $ C: y\equal{}x\sqrt{9\minus{}x^2}\ (x\geq 0)$.
(1) Find the maximum value of $ y$.
(2) Find the area of the figure bounded by the curve $ C$ and the $ x$ axis.
(3) Find the volume of the solid generated by rotation of the figure about the $ y$ axis.
2019 Iran Team Selection Test, 4
Given an acute-angled triangle $ABC$ with orthocenter $H$. Reflection of nine-point circle about $AH$ intersects circumcircle at points $X$ and $Y$. Prove that $AH$ is the external bisector of $\angle XHY$.
[i]Proposed by Mohammad Javad Shabani[/i]
2014 India IMO Training Camp, 1
In a triangle $ABC$, with $AB\neq AC$ and $A\neq 60^{0},120^{0}$, $D$ is a point on line $AC$ different from $C$. Suppose that the circumcentres and orthocentres of triangles $ABC$ and $ABD$ lie on a circle. Prove that $\angle ABD=\angle ACB$.
1987 National High School Mathematics League, 4
$B$ is the center of unit circle. $A,C$ are points on the circle (the order of $A,B,C$ is clockwise), and $\angle ABC=2\alpha(0<\alpha<\frac{\pi}{3})$. Then we will rotate $\triangle ABC$ anticlockwise. In the first rotation, $A$ is the center of rotation, the result is that $B$ is on the circle. In the second rotation, $B$ is the center of rotation, the result is that $C$ is on the circle. In the third rotation, $C$ is the center of rotation, the result is that $A$ is on the circle. ... After we rotate for $100$ times, the distance
$A$ travelled is
$\text{(A)}22\pi(1+\sin\alpha)-66\alpha\qquad\text{(B)}\frac{67}{3}\pi\qquad\text{(C)}22\pi+\frac{68}{3}\pi\sin\alpha-66\alpha\qquad\text{(D)}33\pi-66\alpha$
2000 Harvard-MIT Mathematics Tournament, 8
Let $\vec{v_1},\vec{v_2},\vec{v_3},\vec{v_4}$ and $\vec{v_5}$ be vectors in three dimensions. Show that for some $i,j$ in $1,2,3,4,5$, $\vec{v_i}\cdot \vec{v_j}\ge 0$.