This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

2008 Putnam, B1

What is the maximum number of rational points that can lie on a circle in $ \mathbb{R}^2$ whose center is not a rational point? (A [i]rational point[/i] is a point both of whose coordinates are rational numbers.)

2002 India IMO Training Camp, 1

Let $A,B$ and $C$ be three points on a line with $B$ between $A$ and $C$. Let $\Gamma_1,\Gamma_2, \Gamma_3$ be semicircles, all on the same side of $AC$ and with $AC,AB,BC$ as diameters, respectively. Let $l$ be the line perpendicular to $AC$ through $B$. Let $\Gamma$ be the circle which is tangent to the line $l$, tangent to $\Gamma_1$ internally, and tangent to $\Gamma_3$ externally. Let $D$ be the point of contact of $\Gamma$ and $\Gamma_3$. The diameter of $\Gamma$ through $D$ meets $l$ in $E$. Show that $AB=DE$.

2010 Olympic Revenge, 6

Let $ABC$ to be a triangle and $\Gamma$ its circumcircle. Also, let $D, F, G$ and $E$, in this order, on the arc $BC$ which does not contain $A$ satisfying $\angle BAD = \angle CAE$ and $\angle BAF = \angle CAG$. Let $D`, F`, G`$ and $E`$ to be the intersections of $AD, AF, AG$ and $AE$ with $BC$, respectively. Moreover, $X$ is the intersection of $DF`$ with $EG`$, $Y$ is the intersection of $D`F$ with $E`G$, $Z$ is the intersection of $D`G$ with $E`F$ and $W$ is the intersection of $EF`$ with $DG`$. Prove that $X, Y$ and $A$ are collinear, such as $W, Z$ and $A$. Moreover, prove that $\angle BAX = \angle CAZ$.

2023 Israel National Olympiad, P3

A triangle $ABC$ is given together with an arbitrary circle $\omega$. Let $\alpha$ be the reflection of $\omega$ with respect to $A$, $\beta$ the reflection of $\omega$ with respect to $B$, and $\gamma$ the reflection of $\omega$ with respect to $C$. It is known that the circles $\alpha, \beta, \gamma$ don't intersect each other. Let $P$ be the meeting point of the two internal common tangents to $\beta, \gamma$ (see picture). Similarly, $Q$ is the meeting point of the internal common tangents of $\alpha, \gamma$, and $R$ is the meeting point of the internal common tangents of $\alpha, \beta$. Prove that the triangles $PQR, ABC$ are congruent.

2007 Balkan MO Shortlist, G2

Let $ABCD$ a convex quadrilateral with $AB=BC=CD$, with $AC$ not equal to $BD$ and $E$ be the intersection point of it's diagonals. Prove that $AE=DE$ if and only if $\angle BAD+\angle ADC = 120$.

2010 Iran Team Selection Test, 6

Let $M$ be an arbitrary point on side $BC$ of triangle $ABC$. $W$ is a circle which is tangent to $AB$ and $BM$ at $T$ and $K$ and is tangent to circumcircle of $AMC$ at $P$. Prove that if $TK||AM$, circumcircles of $APT$ and $KPC$ are tangent together.

2013 Germany Team Selection Test, 3

Let $ABC$ be an acute-angled triangle with circumcircle $\omega$. Prove that there exists a point $J$ such that for any point $X$ inside $ABC$ if $AX,BX,CX$ intersect $\omega$ in $A_1,B_1,C_1$ and $A_2,B_2,C_2$ be reflections of $A_1,B_1,C_1$ in midpoints of $BC,AC,AB$ respectively then $A_2,B_2,C_2,J$ lie on a circle.

2011 All-Russian Olympiad Regional Round, 10.2

$ABC$ is an acute triangle. Points $M$ and $K$ on side $AC$ are such that $\angle ABM = \angle CBK$. Prove that the circumcenters of triangles $ABM$, $ABK$, $CBM$ and $CBK$ are concyclic. (Author: T. Emelyanova)

2003 Tournament Of Towns, 5

Is it possible to tile $2003 \times 2003$ board by $1 \times 2$ dominoes placed horizontally and $1 \times 3$ rectangles placed vertically?

1998 National Olympiad First Round, 7

Find the minimal value of integer $ n$ that guarantees: Among $ n$ sets, there exits at least three sets such that any of them does not include any other; or there exits at least three sets such that any two of them includes the other. $\textbf{(A)}\ 4 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 8$

2000 Putnam, 3

The octagon $P_1P_2P_3P_4P_5P_6P_7P_8$ is inscribed in a circle with the vertices around the circumference in the given order. Given that the polygon $P_1P_3P_5P_7$ is a square of area $5$, and the polygon $P_2P_4P_6P_8$ is a rectangle of area $4$, find the maximum possible area of the octagon.

2020 LIMIT Category 1, 7

$\triangle{ABC}$ is equailateral. $E$ is any point on $\overline{AC}$ produced and the equilateral $\triangle{ECD}$ is drawn. If $M$ and $N$ are the midpoints of $\overline{AD}$ and $\overline{EB}$ respectively then show that $\triangle{CMN}$ is equilateral.

2012 USAJMO, 6

Let $P$ be a point in the plane of $\triangle ABC$, and $\gamma$ a line passing through $P$. Let $A', B', C'$ be the points where the reflections of lines $PA, PB, PC$ with respect to $\gamma$ intersect lines $BC, AC, AB$ respectively. Prove that $A', B', C'$ are collinear.

2002 Moldova National Olympiad, 4

The circles $ C_1$ and $ C_2$ with centers $ O_1$ and $ O_2$ respectively are externally tangent. Their common tangent not intersecting the segment $ O_1O_2$ touches $ C_1$ at $ A$ and $ C_2$ at $ B$. Let $ C$ be the reflection of $ A$ in $ O_1O_2$ and $ P$ be the intersection of $ AC$ and $ O_1O_2$. Line $ BP$ meets $ C_2$ again at $ L$. Prove that line $ CL$ is tangent to the circle $ C_2$.

1999 Baltic Way, 15

Let $ABC$ be a triangle with $\angle C=60^\circ$ and $AC<BC$. The point $D$ lies on the side $BC$ and satisfies $BD=AC$. The side $AC$ is extended to the point $E$ where $AC=CE$. Prove that $AB=DE$.

2006 Rioplatense Mathematical Olympiad, Level 3, 1

The acute triangle $ABC$ with $AB\neq AC$ has circumcircle $\Gamma$, circumcenter $O$, and orthocenter $H$. The midpoint of $BC$ is $M$, and the extension of the median $AM$ intersects $\Gamma$ at $N$. The circle of diameter $AM$ intersects $\Gamma$ again at $A$ and $P$. Show that the lines $AP$, $BC$, and $OH$ are concurrent if and only if $AH = HN$.

2024 India National Olympiad, 5

Let points $A_1$, $A_2$ and $A_3$ lie on the circle $\Gamma$ in a counter-clockwise order, and let $P$ be a point in the same plane. For $i \in \{1,2,3\}$, let $\tau_i$ denote the counter-clockwise rotation of the plane centred at $A_i$, where the angle of rotation is equial to the angle at vertex $A_i$ in $\triangle A_1A_2A_3$. Further, define $P_i$ to be the point $\tau_{i+2}(\tau_{i}(\tau_{i+1}(P)))$, where the indices are taken modulo $3$ (i.e., $\tau_4 = \tau_1$ and $\tau_5 = \tau_2$). Prove that the radius of the circumcircle of $\triangle P_1P_2P_3$ is at most the radius of $\Gamma$. [i]Proposed by Anant Mudgal[/i]

2013 Princeton University Math Competition, 8

Eight all different sushis are placed evenly on the edge of a round table, whose surface can rotate around the center. Eight people also evenly sit around the table, each with one sushi in front. Each person has one favorite sushi among these eight, and they are all distinct. They find that no matter how they rotate the table, there are never more than three people who have their favorite sushis in front of them simultaneously. By this requirement, how many different possible arrangements of the eight sushis are there? Two arrangements that differ by a rotation are considered the same.

2006 Bundeswettbewerb Mathematik, 1

A circular disk is partitioned into $ 2n$ equal sectors by $ n$ straight lines through its center. Then, these $ 2n$ sectors are colored in such a way that exactly $ n$ of the sectors are colored in blue, and the other $ n$ sectors are colored in red. We number the red sectors with numbers from $ 1$ to $ n$ in counter-clockwise direction (starting at some of these red sectors), and then we number the blue sectors with numbers from $ 1$ to $ n$ in clockwise direction (starting at some of these blue sectors). Prove that one can find a half-disk which contains sectors numbered with all the numbers from $ 1$ to $ n$ (in some order). (In other words, prove that one can find $ n$ consecutive sectors which are numbered by all numbers $ 1$, $ 2$, ..., $ n$ in some order.) [hide="Problem 8 from CWMO 2007"]$ n$ white and $ n$ black balls are placed at random on the circumference of a circle.Starting from a certain white ball,number all white balls in a clockwise direction by $ 1,2,\dots,n$. Likewise number all black balls by $ 1,2,\dots,n$ in anti-clockwise direction starting from a certain black ball.Prove that there exists a chain of $ n$ balls whose collection of numbering forms the set $ \{1,2,3\dots,n\}$.[/hide]

2013 F = Ma, 12

A spherical shell of mass $M$ and radius $R$ is completely filled with a frictionless fluid, also of mass M. It is released from rest, and then it rolls without slipping down an incline that makes an angle $\theta$ with the horizontal. What will be the acceleration of the shell down the incline just after it is released? Assume the acceleration of free fall is $g$. The moment of inertia of a thin shell of radius $r$ and mass $m$ about the center of mass is $I = \frac{2}{3}mr^2$; the momentof inertia of a solid sphere of radius r and mass m about the center of mass is $I = \frac{2}{5}mr^2$. $\textbf{(A) } g \sin \theta \\ \textbf{(B) } \frac{3}{4} g \sin \theta\\ \textbf{(C) } \frac{1}{2} g \sin \theta\\ \textbf{(D) } \frac{3}{8} g \sin \theta\\ \textbf{(E) } \frac{3}{5} g \sin \theta$

2012 Benelux, 3

In triangle $ABC$ the midpoint of $BC$ is called $M$. Let $P$ be a variable interior point of the triangle such that $\angle CPM=\angle PAB$. Let $\Gamma$ be the circumcircle of triangle $ABP$. The line $MP$ intersects $\Gamma$ a second time at $Q$. Define $R$ as the reflection of $P$ in the tangent to $\Gamma$ at $B$. Prove that the length $|QR|$ is independent of the position of $P$ inside the triangle.

2004 IberoAmerican, 2

In the plane are given a circle with center $ O$ and radius $ r$ and a point $ A$ outside the circle. For any point $ M$ on the circle, let $ N$ be the diametrically opposite point. Find the locus of the circumcenter of triangle $ AMN$ when $ M$ describes the circle.

2007 Balkan MO Shortlist, C1

For a given positive integer $n >2$, let $C_{1},C_{2},C_{3}$ be the boundaries of three convex $n-$ gons in the plane , such that $C_{1}\cap C_{2}, C_{2}\cap C_{3},C_{1}\cap C_{3}$ are finite. Find the maximum number of points of the sets $C_{1}\cap C_{2}\cap C_{3}$.

2001 Pan African, 3

Let $ABC$ be an equilateral triangle and let $P_0$ be a point outside this triangle, such that $\triangle{AP_0C}$ is an isoscele triangle with a right angle at $P_0$. A grasshopper starts from $P_0$ and turns around the triangle as follows. From $P_0$ the grasshopper jumps to $P_1$, which is the symmetric point of $P_0$ with respect to $A$. From $P_1$, the grasshopper jumps to $P_2$, which is the symmetric point of $P_1$ with respect to $B$. Then the grasshopper jumps to $P_3$ which is the symmetric point of $P_2$ with respect to $C$, and so on. Compare the distance $P_0P_1$ and $P_0P_n$. $n \in N$.

2007 International Zhautykov Olympiad, 1

Does there exist a function $f: \mathbb{R}\rightarrow\mathbb{R}$ such that $f(x+f(y))=f(x)+\sin y$, for all reals $x,y$ ?