Found problems: 25757
2013 AMC 12/AHSME, 19
In $ \bigtriangleup ABC $, $ AB = 86 $, and $ AC = 97 $. A circle with center $ A $ and radius $ AB $ intersects $ \overline{BC} $ at points $ B $ and $ X $. Moreover $ \overline{BX} $ and $ \overline{CX} $ have integer lengths. What is $ BC $?
$ \textbf{(A)} \ 11 \qquad \textbf{(B)} \ 28 \qquad \textbf{(C)} \ 33 \qquad \textbf{(D)} \ 61 \qquad \textbf{(E)} \ 72 $
2011 Tokio University Entry Examination, 4
Take a point $P\left(\frac 12,\ \frac 14\right)$ on the coordinate plane. Let two points $Q(\alpha ,\ \alpha ^ 2),\ R(\beta ,\ \beta ^2)$ move in such a way that 3 points $P,\ Q,\ R$ form an isosceles triangle with the base $QR$, find the locus of the barycenter $G(X,\ Y)$ of $\triangle{PQR}$.
[i]2011 Tokyo University entrance exam[/i]
2013 Princeton University Math Competition, 1
Let $O$ be a point with three other points $A,B,C$ and $\angle AOB=\angle BOC=\angle AOC=2\pi/3$. Consider the average area of the set of triangles $ABC$ where $OA,OB,OC\in\{3,4,5\}$. The average area can be written in the form $m\sqrt n$ where $m,n$ are integers and $n$ is not divisible by a perfect square greater than $1$. Find $m+n$.
2007 All-Russian Olympiad, 3
Given a rhombus $ABCD$. A point $M$ is chosen on its side $BC$. The lines, which pass through $M$ and are perpendicular to $BD$ and $AC$, meet line $AD$ in points $P$ and $Q$ respectively. Suppose that the lines $PB,QC,AM$ have a common point. Find all possible values of a ratio $\frac{BM}{MC}$.
[i]S. Berlov, F. Petrov, A. Akopyan[/i]
1978 AMC 12/AHSME, 26
[asy]
import cse5;
size(180);
real a=4, b=3;
pathpen=black;
pair A=(a,0), B=(0,b), C=(0,0);
D(MP("A",A)--MP("B",B,N)--MP("C",C,SW)--cycle);
pair X=IP(B--A,(0,0)--(b,a));
D(CP((X+C)/2,C));
D(MP("R",IP(CP((X+C)/2,C),B--C),NW)--MP("Q",IP(CP((X+C)/2,C),A--C+(0.1,0))));
//Credit to chezbgone2 for the diagram[/asy]
In $\triangle ABC$, $AB = 10~ AC = 8$ and $BC = 6$. Circle $P$ is the circle with smallest radius which passes through $C$ and is tangent to $AB$. Let $Q$ and $R$ be the points of intersection, distinct from $C$ , of circle $P$ with sides $AC$ and $BC$, respectively. The length of segment $QR$ is
$\textbf{(A) }4.75\qquad\textbf{(B) }4.8\qquad\textbf{(C) }5\qquad\textbf{(D) }4\sqrt{2}\qquad \textbf{(E) }3\sqrt{3}$
2018 Yasinsky Geometry Olympiad, 1
In the triangle $ABC$, $AD$ is altitude, $M$ is the midpoint of $BC$. It is known that $\angle BAD = \angle DAM = \angle MAC$. Find the values of the angles of the triangle $ABC$
2014 Oral Moscow Geometry Olympiad, 3
Is there a convex pentagon in which each diagonal is equal to a side?
2019 Romania National Olympiad, 1
Let be a point $ P $ in the interior of a triangle $ ABC $ such that $ BP=AC, M $ be the middlepoint of the segment $ AP,
R $ be the middlepoint of $ BC $ and $ E $ be the intersection of $ BP $ with $ AC. $ Prove that the bisector of $ \angle BEA $ is perpendicular on $ MR $
1986 IMO Longlists, 33
Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.
2017 Vietnam Team Selection Test, 3
Triangle $ABC$ with incircle $(I)$ touches the sides $AB, BC, AC$ at $F, D, E$, res. $I_b, I_c$ are $B$- and $C-$ excenters of $ABC$. $P, Q$ are midpoints of $I_bE, I_cF$. $(PAC)\cap AB=\{ A, R\}$, $(QAB)\cap AC=\{ A,S\}$.
a. Prove that $PR, QS, AI$ are concurrent.
b. $DE, DF$ cut $I_bI_c$ at $K, J$, res. $EJ\cap FK=\{ M\}$. $PE, QF$ cut $(PAC), (QAB)$ at $X, Y$ res. Prove that $BY, CX, AM$ are concurrent.
2012 CHMMC Spring, 2
In the diagram below, $A$ and $B$ trisect $DE$, $C$ and $A$ trisect $F G$, and $B$ and $C$ trisect $HI$. Given that $DI = 5$, $EF = 6$, $GH = 7$, find the area of $\vartriangle ABC$.
[img]https://cdn.artofproblemsolving.com/attachments/d/5/90334e1bf62c99433be41f3b5e03c47c4d4916.png[/img]
2004 India IMO Training Camp, 1
Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.
1982 Swedish Mathematical Competition, 4
$ABC$ is a triangle with $AB = 33$, $AC = 21$ and $BC = m$, an integer. There are points $D$, $E$ on the sides $AB$, $AC$ respectively such that $AD = DE = EC = n$, an integer. Find $m$.
2012 Thailand Mathematical Olympiad, 4
Let $ABCD$ be a unit square. Points $E, F, G, H$ are chosen outside $ABCD$ so that $\angle AEB =\angle BF C = \angle CGD = \angle DHA = 90^o$ . Let $O_1, O_2, O_3, O_4$, respectively, be the incenters of $\vartriangle ABE, \vartriangle BCF, \vartriangle CDG, \vartriangle DAH$. Show that the area of $O_1O_2O_3O_4$ is at most $1$.
2004 India IMO Training Camp, 1
Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.
2006 Sharygin Geometry Olympiad, 8.5
Is there a convex polygon with each side equal to some diagonal, and each diagonal equal to some side?
2015 Iran Geometry Olympiad, 1
Given a circle and Points $P,B,A$ on it.Point $Q$ is Interior of this circle such that:
$1)$ $\angle PAQ=90$.
$ 2)PQ=BQ$.
Prove that $\angle AQB - \angle PQA=\stackrel{\frown}{AB}$.
proposed by Davoud Vakili, Iran.
2019 AMC 12/AHSME, 12
Right triangle $ACD$ with right angle at $C$ is constructed outwards on the hypotenuse $\overline{AC}$ of isosceles right triangle $ABC$ with leg length $1$, as shown, so that the two triangles have equal perimeters. What is $\sin(2\angle BAD)$?
[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(8.016233639805293cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.001920114613276, xmax = 4.014313525192017, ymin = -2.552570341575814, ymax = 5.6249093771911145; /* image dimensions */
draw((-1.6742337260757447,-1.)--(-1.6742337260757445,-0.6742337260757447)--(-2.,-0.6742337260757447)--(-2.,-1.)--cycle, linewidth(2.));
draw((-1.7696484586262846,2.7696484586262846)--(-1.5392969172525692,3.)--(-1.7696484586262846,3.2303515413737154)--(-2.,3.)--cycle, linewidth(2.));
/* draw figures */
draw((-2.,3.)--(-2.,-1.), linewidth(2.));
draw((-2.,-1.)--(2.,-1.), linewidth(2.));
draw((2.,-1.)--(-2.,3.), linewidth(2.));
draw((-0.6404058554606791,4.3595941445393205)--(-2.,3.), linewidth(2.));
draw((-0.6404058554606791,4.3595941445393205)--(2.,-1.), linewidth(2.));
label("$D$",(-0.9382446143428628,4.887784444795223),SE*labelscalefactor,fontsize(14));
label("$A$",(1.9411496528285788,-1.0783204767840298),SE*labelscalefactor,fontsize(14));
label("$B$",(-2.5046350956841272,-0.9861798602345433),SE*labelscalefactor,fontsize(14));
label("$C$",(-2.5737405580962416,3.5747806589650395),SE*labelscalefactor,fontsize(14));
label("$1$",(-2.665881174645728,1.2712652452278765),SE*labelscalefactor,fontsize(14));
label("$1$",(-0.3393306067712029,-1.3547423264324894),SE*labelscalefactor,fontsize(14));
/* dots and labels */
dot((-2.,3.),linewidth(4.pt) + dotstyle);
dot((-2.,-1.),linewidth(4.pt) + dotstyle);
dot((2.,-1.),linewidth(4.pt) + dotstyle);
dot((-0.6404058554606791,4.3595941445393205),linewidth(4.pt) + dotstyle);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]
$\textbf{(A) } \dfrac{1}{3} \qquad\textbf{(B) } \dfrac{\sqrt{2}}{2} \qquad\textbf{(C) } \dfrac{3}{4} \qquad\textbf{(D) } \dfrac{7}{9} \qquad\textbf{(E) } \dfrac{\sqrt{3}}{2}$
2022 CMIMC, 2.7 1.3
Let $\Gamma_1, \Gamma_2, \Gamma_3$ be three pairwise externally tangent circles with radii $1,2,3,$ respectively. A circle passes through the centers of $\Gamma_2$ and $\Gamma_3$ and is externally tangent to $\Gamma_1$ at a point $P.$ Suppose $A$ and $B$ are the centers of $\Gamma_2$ and $\Gamma_3,$ respectively. What is the value of $\frac{{PA}^2}{{PB}^2}?$
[i]Proposed by Kyle Lee[/i]
1996 All-Russian Olympiad Regional Round, 11.7
In triangle $ABC$, a point $O$ is taken such that $\angle COA = \angle B + 60^o$, $\angle COB = \angle A + 60^o$, $\angle AOB = \angle C + 60^o$.Prove that if a triangle can be formed from the segments $AO$, $BO$, $CO$, then a triangle can also be formed from the altitudes of triangle $ABC$ and these triangles are similar.
1992 IMO Longlists, 40
The colonizers of a spherical planet have decided to build $N$ towns, each having area $1/1000$ of the total area of the planet. They also decided that any two points belonging to different towns will have different latitude and different longitude. What is the maximal value of $N$?
1976 IMO Longlists, 23
Prove that in a Euclidean plane there are infinitely many concentric circles $C$ such that all triangles inscribed in $C$ have at least one irrational side.
2010 All-Russian Olympiad Regional Round, 11.6
At the base of the quadrangular pyramid $SABCD$ lies the parallelogram $ABCD$. Prove that for any point $O$ inside the pyramid, the sum of the volumes of the tetrahedra $OSAB$ and $OSCD$ is equal to the sum of the volumes of the tetrahedra $OSBC$ and $OSDA$ .
Ukraine Correspondence MO - geometry, 2003.5
Let $O$ be the center of the circle $\omega$, and let $A$ be a point inside this circle, different from $O$. Find all points $P$ on the circle $\omega$ for which the angle $\angle OPA$ acquires the greatest value.
2017 Kosovo National Mathematical Olympiad, 5
A sphere with ray $R$ is cut by two parallel planes. such that the center of the sphere is outside the region determined by these planes. Let $S_{1}$ and $S_{2}$ be the areas of the intersections, and $d$ the distance between these planes. Find the area of the intersection of the sphere with the plane parallel with these two planes, with equal distance from them.