This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2013 AMC 12/AHSME, 19

In $ \bigtriangleup ABC $, $ AB = 86 $, and $ AC = 97 $. A circle with center $ A $ and radius $ AB $ intersects $ \overline{BC} $ at points $ B $ and $ X $. Moreover $ \overline{BX} $ and $ \overline{CX} $ have integer lengths. What is $ BC $? $ \textbf{(A)} \ 11 \qquad \textbf{(B)} \ 28 \qquad \textbf{(C)} \ 33 \qquad \textbf{(D)} \ 61 \qquad \textbf{(E)} \ 72 $

2011 Tokio University Entry Examination, 4

Take a point $P\left(\frac 12,\ \frac 14\right)$ on the coordinate plane. Let two points $Q(\alpha ,\ \alpha ^ 2),\ R(\beta ,\ \beta ^2)$ move in such a way that 3 points $P,\ Q,\ R$ form an isosceles triangle with the base $QR$, find the locus of the barycenter $G(X,\ Y)$ of $\triangle{PQR}$. [i]2011 Tokyo University entrance exam[/i]

2013 Princeton University Math Competition, 1

Tags: geometry
Let $O$ be a point with three other points $A,B,C$ and $\angle AOB=\angle BOC=\angle AOC=2\pi/3$. Consider the average area of the set of triangles $ABC$ where $OA,OB,OC\in\{3,4,5\}$. The average area can be written in the form $m\sqrt n$ where $m,n$ are integers and $n$ is not divisible by a perfect square greater than $1$. Find $m+n$.

2007 All-Russian Olympiad, 3

Tags: rhombus , geometry , ratio
Given a rhombus $ABCD$. A point $M$ is chosen on its side $BC$. The lines, which pass through $M$ and are perpendicular to $BD$ and $AC$, meet line $AD$ in points $P$ and $Q$ respectively. Suppose that the lines $PB,QC,AM$ have a common point. Find all possible values of a ratio $\frac{BM}{MC}$. [i]S. Berlov, F. Petrov, A. Akopyan[/i]

1978 AMC 12/AHSME, 26

[asy] import cse5; size(180); real a=4, b=3; pathpen=black; pair A=(a,0), B=(0,b), C=(0,0); D(MP("A",A)--MP("B",B,N)--MP("C",C,SW)--cycle); pair X=IP(B--A,(0,0)--(b,a)); D(CP((X+C)/2,C)); D(MP("R",IP(CP((X+C)/2,C),B--C),NW)--MP("Q",IP(CP((X+C)/2,C),A--C+(0.1,0)))); //Credit to chezbgone2 for the diagram[/asy] In $\triangle ABC$, $AB = 10~ AC = 8$ and $BC = 6$. Circle $P$ is the circle with smallest radius which passes through $C$ and is tangent to $AB$. Let $Q$ and $R$ be the points of intersection, distinct from $C$ , of circle $P$ with sides $AC$ and $BC$, respectively. The length of segment $QR$ is $\textbf{(A) }4.75\qquad\textbf{(B) }4.8\qquad\textbf{(C) }5\qquad\textbf{(D) }4\sqrt{2}\qquad \textbf{(E) }3\sqrt{3}$

2018 Yasinsky Geometry Olympiad, 1

In the triangle $ABC$, $AD$ is altitude, $M$ is the midpoint of $BC$. It is known that $\angle BAD = \angle DAM = \angle MAC$. Find the values of the angles of the triangle $ABC$

2014 Oral Moscow Geometry Olympiad, 3

Is there a convex pentagon in which each diagonal is equal to a side?

2019 Romania National Olympiad, 1

Let be a point $ P $ in the interior of a triangle $ ABC $ such that $ BP=AC, M $ be the middlepoint of the segment $ AP, R $ be the middlepoint of $ BC $ and $ E $ be the intersection of $ BP $ with $ AC. $ Prove that the bisector of $ \angle BEA $ is perpendicular on $ MR $

1986 IMO Longlists, 33

Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.

2017 Vietnam Team Selection Test, 3

Tags: geometry
Triangle $ABC$ with incircle $(I)$ touches the sides $AB, BC, AC$ at $F, D, E$, res. $I_b, I_c$ are $B$- and $C-$ excenters of $ABC$. $P, Q$ are midpoints of $I_bE, I_cF$. $(PAC)\cap AB=\{ A, R\}$, $(QAB)\cap AC=\{ A,S\}$. a. Prove that $PR, QS, AI$ are concurrent. b. $DE, DF$ cut $I_bI_c$ at $K, J$, res. $EJ\cap FK=\{ M\}$. $PE, QF$ cut $(PAC), (QAB)$ at $X, Y$ res. Prove that $BY, CX, AM$ are concurrent.

2012 CHMMC Spring, 2

Tags: geometry
In the diagram below, $A$ and $B$ trisect $DE$, $C$ and $A$ trisect $F G$, and $B$ and $C$ trisect $HI$. Given that $DI = 5$, $EF = 6$, $GH = 7$, find the area of $\vartriangle ABC$. [img]https://cdn.artofproblemsolving.com/attachments/d/5/90334e1bf62c99433be41f3b5e03c47c4d4916.png[/img]

2004 India IMO Training Camp, 1

Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.

1982 Swedish Mathematical Competition, 4

$ABC$ is a triangle with $AB = 33$, $AC = 21$ and $BC = m$, an integer. There are points $D$, $E$ on the sides $AB$, $AC$ respectively such that $AD = DE = EC = n$, an integer. Find $m$.

2012 Thailand Mathematical Olympiad, 4

Let $ABCD$ be a unit square. Points $E, F, G, H$ are chosen outside $ABCD$ so that $\angle AEB =\angle BF C = \angle CGD = \angle DHA = 90^o$ . Let $O_1, O_2, O_3, O_4$, respectively, be the incenters of $\vartriangle ABE, \vartriangle BCF, \vartriangle CDG, \vartriangle DAH$. Show that the area of $O_1O_2O_3O_4$ is at most $1$.

2004 India IMO Training Camp, 1

Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.

2006 Sharygin Geometry Olympiad, 8.5

Is there a convex polygon with each side equal to some diagonal, and each diagonal equal to some side?

2015 Iran Geometry Olympiad, 1

Tags: geometry
Given a circle and Points $P,B,A$ on it.Point $Q$ is Interior of this circle such that: $1)$ $\angle PAQ=90$. $ 2)PQ=BQ$. Prove that $\angle AQB - \angle PQA=\stackrel{\frown}{AB}$. proposed by Davoud Vakili, Iran.

2019 AMC 12/AHSME, 12

Tags: geometry
Right triangle $ACD$ with right angle at $C$ is constructed outwards on the hypotenuse $\overline{AC}$ of isosceles right triangle $ABC$ with leg length $1$, as shown, so that the two triangles have equal perimeters. What is $\sin(2\angle BAD)$? [asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(8.016233639805293cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.001920114613276, xmax = 4.014313525192017, ymin = -2.552570341575814, ymax = 5.6249093771911145; /* image dimensions */ draw((-1.6742337260757447,-1.)--(-1.6742337260757445,-0.6742337260757447)--(-2.,-0.6742337260757447)--(-2.,-1.)--cycle, linewidth(2.)); draw((-1.7696484586262846,2.7696484586262846)--(-1.5392969172525692,3.)--(-1.7696484586262846,3.2303515413737154)--(-2.,3.)--cycle, linewidth(2.)); /* draw figures */ draw((-2.,3.)--(-2.,-1.), linewidth(2.)); draw((-2.,-1.)--(2.,-1.), linewidth(2.)); draw((2.,-1.)--(-2.,3.), linewidth(2.)); draw((-0.6404058554606791,4.3595941445393205)--(-2.,3.), linewidth(2.)); draw((-0.6404058554606791,4.3595941445393205)--(2.,-1.), linewidth(2.)); label("$D$",(-0.9382446143428628,4.887784444795223),SE*labelscalefactor,fontsize(14)); label("$A$",(1.9411496528285788,-1.0783204767840298),SE*labelscalefactor,fontsize(14)); label("$B$",(-2.5046350956841272,-0.9861798602345433),SE*labelscalefactor,fontsize(14)); label("$C$",(-2.5737405580962416,3.5747806589650395),SE*labelscalefactor,fontsize(14)); label("$1$",(-2.665881174645728,1.2712652452278765),SE*labelscalefactor,fontsize(14)); label("$1$",(-0.3393306067712029,-1.3547423264324894),SE*labelscalefactor,fontsize(14)); /* dots and labels */ dot((-2.,3.),linewidth(4.pt) + dotstyle); dot((-2.,-1.),linewidth(4.pt) + dotstyle); dot((2.,-1.),linewidth(4.pt) + dotstyle); dot((-0.6404058554606791,4.3595941445393205),linewidth(4.pt) + dotstyle); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy] $\textbf{(A) } \dfrac{1}{3} \qquad\textbf{(B) } \dfrac{\sqrt{2}}{2} \qquad\textbf{(C) } \dfrac{3}{4} \qquad\textbf{(D) } \dfrac{7}{9} \qquad\textbf{(E) } \dfrac{\sqrt{3}}{2}$

2022 CMIMC, 2.7 1.3

Tags: geometry
Let $\Gamma_1, \Gamma_2, \Gamma_3$ be three pairwise externally tangent circles with radii $1,2,3,$ respectively. A circle passes through the centers of $\Gamma_2$ and $\Gamma_3$ and is externally tangent to $\Gamma_1$ at a point $P.$ Suppose $A$ and $B$ are the centers of $\Gamma_2$ and $\Gamma_3,$ respectively. What is the value of $\frac{{PA}^2}{{PB}^2}?$ [i]Proposed by Kyle Lee[/i]

1996 All-Russian Olympiad Regional Round, 11.7

In triangle $ABC$, a point $O$ is taken such that $\angle COA = \angle B + 60^o$, $\angle COB = \angle A + 60^o$, $\angle AOB = \angle C + 60^o$.Prove that if a triangle can be formed from the segments $AO$, $BO$, $CO$, then a triangle can also be formed from the altitudes of triangle $ABC$ and these triangles are similar.

1992 IMO Longlists, 40

The colonizers of a spherical planet have decided to build $N$ towns, each having area $1/1000$ of the total area of the planet. They also decided that any two points belonging to different towns will have different latitude and different longitude. What is the maximal value of $N$?

1976 IMO Longlists, 23

Tags: geometry
Prove that in a Euclidean plane there are infinitely many concentric circles $C$ such that all triangles inscribed in $C$ have at least one irrational side.

2010 All-Russian Olympiad Regional Round, 11.6

At the base of the quadrangular pyramid $SABCD$ lies the parallelogram $ABCD$. Prove that for any point $O$ inside the pyramid, the sum of the volumes of the tetrahedra $OSAB$ and $OSCD$ is equal to the sum of the volumes of the tetrahedra $OSBC$ and $OSDA$ .

Ukraine Correspondence MO - geometry, 2003.5

Let $O$ be the center of the circle $\omega$, and let $A$ be a point inside this circle, different from $O$. Find all points $P$ on the circle $\omega$ for which the angle $\angle OPA$ acquires the greatest value.

2017 Kosovo National Mathematical Olympiad, 5

Tags: geometry
A sphere with ray $R$ is cut by two parallel planes. such that the center of the sphere is outside the region determined by these planes. Let $S_{1}$ and $S_{2}$ be the areas of the intersections, and $d$ the distance between these planes. Find the area of the intersection of the sphere with the plane parallel with these two planes, with equal distance from them.