This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2017 Istmo Centroamericano MO, 1

Let $ABC$ be a triangle with $\angle ABC = 90^o$ and $AB> BC$. Let $D$ be a point on side $AB$ such that $BD = BC$. Let $E$ be the foot of the perpendicular from $D$ on $AC$, and $F$ the reflection of $B$ wrt $CD$. Show that $EC$ is the bisector of angle $\angle BEF$.

2018 IFYM, Sozopol, 5

Tags: geometry
Point $X$ lies in a right-angled isosceles $\triangle ABC$ ($\angle ABC = 90^\circ$). Prove that $AX+BX+\sqrt{2}CX \geq \sqrt{5}AB$ and find for which points $X$ the equality is met.

2010 Moldova Team Selection Test, 3

Let $ ABCD$ be a convex quadrilateral. We have that $ \angle BAC\equal{}3\angle CAD$, $ AB\equal{}CD$, $ \angle ACD\equal{}\angle CBD$. Find angle $ \angle ACD$

1997 USAMO, 2

Let $ABC$ be a triangle. Take points $D$, $E$, $F$ on the perpendicular bisectors of $BC$, $CA$, $AB$ respectively. Show that the lines through $A$, $B$, $C$ perpendicular to $EF$, $FD$, $DE$ respectively are concurrent.

2020 Switzerland Team Selection Test, 3

Let $k$ be a circle with centre $O$. Let $AB$ be a chord of this circle with midpoint $M\neq O$. The tangents of $k$ at the points $A$ and $B$ intersect at $T$. A line goes through $T$ and intersects $k$ in $C$ and $D$ with $CT < DT$ and $BC = BM$. Prove that the circumcentre of the triangle $ADM$ is the reflection of $O$ across the line $AD$.

XMO (China) 2-15 - geometry, 10.2

Given acute triangle $\vartriangle ABC$ with orthocenter $H$ and circumcenter $O$ ($O \ne H$) . Let $\Gamma$ be the circumcircle of $\vartriangle BOC$ . Segment $OH$ untersects $\Gamma$ at point $P$. Extension of $AO$ intersects $\Gamma$ at point $K$. If $AP \perp OH$, prove that $PK$ bisects $BC$. [img]https://cdn.artofproblemsolving.com/attachments/a/b/267053569c41692f47d8f4faf2a31ebb4f4efd.png[/img]

2002 ITAMO, 3

Let $A$ and $B$ are two points on a plane, and let $M$ be the midpoint of $AB$. Let $r$ be a line and let $R$ and $S$ be the projections of $A$ and $B$ onto $r$. Assuming that $A$, $M$, and $R$ are not collinear, prove that the circumcircle of triangle $AMR$ has the same radius as the circumcircle of $BSM$.

2010 Sharygin Geometry Olympiad, 5

The incircle of a right-angled triangle $ABC$ ($\angle ABC =90^o$) touches $AB, BC, AC$ in points $C_1, A_1, B_1$, respectively. One of the excircles touches the side $BC$ in point $A_2$. Point $A_0$ is the circumcenter or triangle $A_1A_2B_1$, point $C_0$ is defined similarly. Find angle $A_0BC_0$.

2011 AMC 12/AHSME, 23

A bug travels in the coordinate plane, moving only along the lines that are parallel to the $x$-axis or $y$-axis. Let $A=(-3, 2)$ and $B=(3, -2)$. Consider all possible paths of the bug from $A$ to $B$ of length at most $20$. How many points with integer coordinates lie on at least one of these paths? $ \textbf{(A)}\ 161 \qquad \textbf{(B)}\ 185 \qquad \textbf{(C)}\ 195 \qquad \textbf{(D)}\ 227 \qquad \textbf{(E)}\ 255 $

2020 BMT Fall, 12

A hollow box (with negligible thickness) shaped like a rectangular prism has a volume of $108$ cubic units. The top of the box is removed, exposing the faces on the inside of the box. What is the minimum possible value for the sum of the areas of the faces on the outside and inside of the box?

2014 Oral Moscow Geometry Olympiad, 5

Given a regular triangle $ABC$, whose area is $1$, and the point $P$ on its circumscribed circle. Lines $AP, BP, CP$ intersect, respectively, lines $BC, CA, AB$ at points $A', B', C'$. Find the area of the triangle $A'B'C'$.

2019 Harvard-MIT Mathematics Tournament, 6

Tags: hmmt , geometry
Scalene triangle $ABC$ satisfies $\angle A = 60^{\circ}$. Let the circumcenter of $ABC$ be $O$, the orthocenter be $H$, and the incenter be $I$. Let $D$, $T$ be the points where line $BC$ intersects the internal and external angle bisectors of $\angle A$, respectively. Choose point $X$ on the circumcircle of $\triangle IHO$ such that $HX \parallel AI$. Prove that $OD \perp TX$.

2005 Sharygin Geometry Olympiad, 1

The chords $AC$ and $BD$ of the circle intersect at point $P$. The perpendiculars to $AC$ and $BD$ at points $C$ and $D$, respectively, intersect at point $Q$. Prove that the lines $AB$ and $PQ$ are perpendicular.

2017 Iranian Geometry Olympiad, 2

Tags: geometry
Two circles $\omega_1,\omega_2$ intersect at $A,B$. An arbitrary line through $B$ meets $\omega_1,\omega_2$ at $C,D$ respectively. The points $E,F$ are chosen on $\omega_1,\omega_2$ respectively so that $CE=CB,\ BD=DF$. Suppose that $BF$ meets $\omega_1$ at $P$, and $BE$ meets $\omega_2$ at $Q$. Prove that $A,P,Q$ are collinear. [i]Proposed by Iman Maghsoudi[/i]

2010 Sharygin Geometry Olympiad, 7

The line passing through the vertex $B$ of a triangle $ABC$ and perpendicular to its median $BM$ intersects the altitudes dropped from $A$ and $C$ (or their extensions) in points $K$ and $N.$ Points $O_1$ and $O_2$ are the circumcenters of the triangles $ABK$ and $CBN$ respectively. Prove that $O_1M=O_2M.$

2022 Belarusian National Olympiad, 10.4

On the semicircle with diameter $AB$ and center $O$ point $D$ is marked. Points $E$ and $F$ are the midpoints of minor arcs $AD$ and $BD$ respectively. It turned out that the line connecting orthocenters of $ADF$ and $BDE$ passes through $O$ Find $\angle AOD$

2021 ISI Entrance Examination, 6

Tags: triangle , geometry
If a given equilateral triangle $\Delta$ of side length $a$ lies in the union of five equilateral triangles of side length $b$, show that there exist four equilateral triangles of side length $b$ whose union contains $\Delta$.

Novosibirsk Oral Geo Oly IX, 2017.5

Point $K$ is marked on the diagonal $AC$ in rectangle $ABCD$ so that $CK = BC$. On the side $BC$, point $M$ is marked so that $KM = CM$. Prove that $AK + BM = CM$.

2015 China Northern MO, 5

As shown in figure , points $D,E,F$ lies the sides $AB$, $BC$ , $CA$ of the acute angle $\vartriangle ABC$ respectively. If $\angle EDC = \angle CDF$, $\angle FEA=\angle AED$, $\angle DFB =\angle BFE$, prove that the $CD$, $AE$, $BF$ are the altitudes of $\vartriangle ABC$. [img]https://cdn.artofproblemsolving.com/attachments/3/d/5ddf48e298ad1b75691c13935102b26abe73c1.png[/img]

2017 Hong Kong TST, 1

a) Do there exist 5 circles in the plane such that each circle passes through exactly 3 centers of other circles? b) Do there exist 6 circles in the plane such that each circle passes through exactly 3 centers of other circles?

2017 Costa Rica - Final Round, 5

Consider two circles $\Pi_1$ and $\Pi_1$ tangent externally at point $S$, such that the radius of $\Pi_2$ is triple the radius of $\Pi_1$. Let $\ell$ be a line that is tangent to $\Pi_1$ at point $ P$ and tangent to $\Pi_2$ at point $Q$, with $P$ and $Q$ different from $S$. Let $T$ be a point at $\Pi_2$, such that the segment $TQ$ is diameter of $\Pi_2$ and let point $R$ be the intersection of the bisector of $\angle SQT$ with $ST$. Prove that $QR = RT$.

II Soros Olympiad 1995 - 96 (Russia), 11.9

Tags: excircle , geometry
In triangle $ABC$, the side $BC = a$ and the radius $r$ of the circle tangent to the side BC and the extensions of $AB$ and $AC$ ($A$-excircle) are known. It is also known that inside the triangle there is a point $M$ such that $$BC - AM = CA - BM = AB - CM$$ Find the radius of the circle inscribed in the triangle $BMC$.

V Soros Olympiad 1998 - 99 (Russia), grade7

[b]p1.[/b] There are eight different dominoes in the box (fig.), but the boundaries between them are not visible. Draw the boundaries. [img]https://cdn.artofproblemsolving.com/attachments/6/f/6352b18c25478d68a23820e32a7f237c9f2ba9.png[/img] [b]p2.[/b] The teacher drew a quadrilateral $ABCD$ on the board. Vanya and Vitya marked points $X$ and $Y$ inside it, from which all sides of the quadrilateral are visible at equal angles. What is the distance between points $X$ and $Y$? (From point $X$, side $AB$ is visible at angle $AXB$.) [b]pЗ.[/b] Several identical black squares, perhaps partially overlapping, were placed on a white plane. The result was a black polygonal figure, possibly with holes or from several pieces. Could it be that this figure does not have a single right angle? [b]p4.[/b] The bus ticket number consists of six digits (the first digits may be zeros). A ticket is called [i]lucky [/i] if the sum of the first three digits is equal to the sum of the last three. Prove that the sum of the numbers of all lucky tickets is divisible by $13$. [b]p5.[/b] The Meandrovka River, which has many bends, crosses a straight highway under thirteen bridges. Prove that there are two neighboring bridges along both the highway and the river. (Bridges are called river neighbors if there are no other bridges between them on the river section; bridges are called highway neighbors if there are no other bridges between them on the highway section.) PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]

2014 Contests, 3

A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square? [i]Proposed by Evan Chen[/i]

JBMO Geometry Collection, 2019

Triangle $ABC$ is such that $AB < AC$. The perpendicular bisector of side $BC$ intersects lines $AB$ and $AC$ at points $P$ and $Q$, respectively. Let $H$ be the orthocentre of triangle $ABC$, and let $M$ and $N$ be the midpoints of segments $BC$ and $PQ$, respectively. Prove that lines $HM$ and $AN$ meet on the circumcircle of $ABC$.