This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1981 Canada National Olympiad, 2

Given a circle of radius $r$ and a tangent line $\ell$ to the circle through a given point $P$ on the circle. From a variable point $R$ on the circle, a perpendicular $RQ$ is drawn to $\ell$ with $Q$ on $\ell$. Determine the maximum of the area of triangle $PQR$.

2003 Cuba MO, 3

Let $ABC$ be an acute triangle and $T$ be a point interior to this triangle. that $\angle ATB = \angle BTC = \angle CTA$. Let $M,N$ and $P$ be the feet of the perpendiculars from $T$ to $BC$, $CA$ and $AB$ respectively. Prove that if the circle circumscribed around $\vartriangle MNP$ cuts again the sides $ BC$, $CA$ and $AB$ in $M_1$, $N_1$, $P_1$ respectively, then the $\vartriangle M_1N_1P_1$ It is equilateral.

2000 Harvard-MIT Mathematics Tournament, 13

Determine the remainder when $(x^4-1)(x^2-1)$ is divided by $1+x+x^2$.

2013 Sharygin Geometry Olympiad, 5

Tags: rhombus , geometry
Four segments drawn from a given point inside a convex quadrilateral to its vertices, split the quadrilateral into four equal triangles. Can we assert that this quadrilateral is a rhombus?

2010 Contests, 3

[b](a)[/b]Prove that every pentagon with integral coordinates has at least two vertices , whose respective coordinates have the same parity. [b](b)[/b]What is the smallest area possible of pentagons with integral coordinates. Albanian National Mathematical Olympiad 2010---12 GRADE Question 3.

1997 IMO Shortlist, 16

In an acute-angled triangle $ ABC,$ let $ AD,BE$ be altitudes and $ AP,BQ$ internal bisectors. Denote by $ I$ and $ O$ the incenter and the circumcentre of the triangle, respectively. Prove that the points $ D, E,$ and $ I$ are collinear if and only if the points $ P, Q,$ and $ O$ are collinear.

1984 AMC 12/AHSME, 26

In the obtuse triangle $ABC$, $AM = MB, MD \perp BC, EC \perp BC$. If the area of $\triangle ABC$ is 24, then the area of $\triangle BED$ is [asy] size(200); defaultpen(linewidth(0.8)+fontsize(11pt)); pair A = (6.5,3.2), B = origin, C = (5.0), D = (3.3,0); pair Xc = (C.x,4), Xd = (D.x,4), E = intersectionpoint(A--B,C--Xc), M = intersectionpoint(D--Xd, A--B); draw(C--A--B--C--E--D--M); label("$A$",A,NE); label("$B$",B,W); label("$C$",C,SE); label("$D$",D,S); label("$E$",E,N); label("$M$",M,N); draw(rightanglemark(D,C,E,7)^^rightanglemark(B,D,M,7)); [/asy] $\textbf{(A) }9\qquad \textbf{(B) }12\qquad \textbf{(C) }15\qquad \textbf{(D) }18\qquad \textbf{(E) }\text{not uniquely determined}$

2012 Gulf Math Olympiad, 1

Let $X,\ Y$ and $Z$ be the midpoints of sides $BC,\ CA$, and $AB$ of the triangle $ABC$, respectively. Let $P$ be a point inside the triangle. Prove that the quadrilaterals $AZPY,\ BXPZ$, and $CYPX$ have equal areas if, and only if, $P$ is the centroid of $ABC$.

2018 All-Russian Olympiad, 6

Three diagonals of a regular $n$-gon prism intersect at an interior point $O$. Show that $O$ is the center of the prism. (The diagonal of the prism is a segment joining two vertices not lying on the same face of the prism.)

1997 AIME Problems, 4

Circles of radii 5, 5, 8, and $m/n$ are mutually externally tangent, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

1991 USAMO, 5

Tags: geometry
Let $\, D \,$ be an arbitrary point on side $\, AB \,$ of a given triangle $\, ABC, \,$ and let $\, E \,$ be the interior point where $\, CD \,$ intersects the external common tangent to the incircles of triangles $\, ACD \,$ and $\, BCD$. As $\, D \,$ assumes all positions between $\, A \,$ and $\, B \,$, prove that the point $\, E \,$ traces the arc of a circle.

2000 JBMO ShortLists, 20

Let $ABC$ be a triangle and let $a,b,c$ be the lengths of the sides $BC, CA, AB$ respectively. Consider a triangle $DEF$ with the side lengths $EF=\sqrt{au}$, $FD=\sqrt{bu}$, $DE=\sqrt{cu}$. Prove that $\angle A >\angle B >\angle C$ implies $\angle A >\angle D >\angle E >\angle F >\angle C$.

2007 Postal Coaching, 1

Let $P$ be a point on the circumcircle of a square $ABCD$. Find all integers $n > 0$ such that the sum $$S_n(P) = |PA|^n + |PB|^n + |PC|^n + |PD|^n$$ is constant with respect to the point $P$.

1960 Polish MO Finals, 3

Tags: cyclic , geometry , hexagon
On the circle 6 distinct points $ A $, $ B $, $ C $, $ D $, $ E $, $ F $ are chosen in such a way that $ AB $ is parallel to $ DE $, and $ DC $ is parallel to $ AF $. Prove that $ BC $ is parallel to $ EF $

2009 Pan African, 2

Point $P$ lies inside a triangle $ABC$. Let $D,E$ and $F$ be reflections of the point $P$ in the lines $BC,CA$ and $AB$, respectively. Prove that if the triangle $DEF$ is equilateral, then the lines $AD,BE$ and $CF$ intersect in a common point.

2009 Sharygin Geometry Olympiad, 5

Let $n$ points lie on the circle. Exactly half of triangles formed by these points are acute-angled. Find all possible $n$. (B.Frenkin)

1997 Brazil National Olympiad, 6

Tags: geometry
$f$ is a plane map onto itself such that points at distance 1 are always taken at point at distance 1. Show that $f$ preserves distances.

2019 Peru Cono Sur TST, P2

Tags: geometry
Let $AB$ be a diameter of a circle $\Gamma$ with center $O$. Let $CD$ be a chord where $CD$ is perpendicular to $AB$, and $E$ is the midpoint of $CO$. The line $AE$ cuts $\Gamma$ in the point $F$, the segment $BC$ cuts $AF$ and $DF$ in $M$ and $N$, respectively. The circumcircle of $DMN$ intersects $\Gamma$ in the point $K$. Prove that $KM=MB$.

2006 Chile National Olympiad, 6

Let $ \vartriangle ABC $ be an acute triangle and scalene, with $ BC $ its smallest side. Let $ P, Q $ points on $ AB, AC $ respectively, such that $ BQ = CP = BC $. Let $ O_1, O_2 $ be the centers of the circles circumscribed to $ \vartriangle AQB, \vartriangle APC $, respectively. Sean $ H, O $ the orthocenter and circumcenter of $ \vartriangle ABC $ a) Show that $ O_1O_2 = BC $. b) Show that $ BO_2, CO_1 $ and $ HO $ are concurrent

2004 AIME Problems, 4

A square has sides of length $2$. Set $S$ is the set of all line segments that have length $2$ and whose endpoints are on adjacent sides of the square. The midpoints of the line segments in set $S$ enclose a region whose area to the nearest hundredth is $k$. Find $100k$.

2022 Estonia Team Selection Test, 4

Tags: geometry
Let $ABCD$ be a cyclic quadrilateral whose center of the circumscribed circle is inside this quadrilateral, and its diagonals intersect in point $S{}$. Let $P{}$ and $Q{}$ be the centers of the curcimuscribed circles of triangles $ABS$ and $BCS$. The lines through the points $P{}$ and $Q{}$, which are parallel to the sides $AD$ and $CD$, respectively, intersect at the point $R$. Prove that the point $R$ lies on the line $BD$.

2020 Kyiv Mathematical Festival, 2

Mummy-trolley huts are located on a straight line at points with coordinates $x_1, x_2,...., x_n$. In this village are going to build $3$ stores $A, B$ and $C$, of which will be brought every day to all Moomin-trolls chocolates, bread and water. For the delivery of chocolate, the store takes the distance from the store to the hut, raised to the square; for bread delivery , take the distance from the store to the hut; for water delivery take distance $1$, if the distance is greater than $1$ km, but do not take anything otherwise. a) Where to build each of the stores so that the total cost of all Moomin-trolls for delivery wasthe smallest? b) Where to place the TV tower, if the fee for each Moomin-troll is the maximum distance from the TV tower to the farthest hut from it? c) How will the answer change if the Moomin-troll huts are not located in a straight line, and on the plane? [hide=original wording] На прямiй розташованi хатинки Мумi-тролей в точках з координатами x1, x2, . . . , xn. В цьому селi бираються побудувати 3 магазина A, B та C, з яких будуть кожен день привозити всiм Мумi-тролям шоколадки, хлiб та воду. За доставку шоколадки мага- зин бере вiдстань вiд магазину до хатинки, пiднесену до квадрату; за доставку хлiба – вiдстань вiд магазину до хатинки; за доставку води беруть 1, якщо вiдстань бiльша 1 км, та нiчого не беруть в супротивному випадку. 1. Де побудувати кожний з магазинiв, щоб загальнi витрати всiх Мумi-тролей на доставку були найменшими? 2. Де розташувати телевежу, якщо плата для кожного Мумi-троля – максимальна вiдстань вiд телевежi до самої вiддаленої вiд неї хатинки? 3. Як змiниться вiдповiдь, якщо хатинки Мумi-тролей розташованi не на прямiй, а на площинi?[/hide]

1989 Czech And Slovak Olympiad IIIA, 4

The lengths of the sides of triangle $T'$ are equal to the lengths of the medians of triangle $T$. If triangles $T$ and $T'$ coincide in one angle, they are similar. Prove it.

2021 2nd Memorial "Aleksandar Blazhevski-Cane", 1

Tags: geometry
Let $ABCD$ be a cyclic quadrilateral such that $AB=AD$. Let $E$ and $F$ be points on the sides $BC$ and $CD$, respectively, such that $BE+DF=EF$. Prove that $\angle BAD = 2 \angle EAF$.

2005 Argentina National Olympiad, 4

We will say that a positive integer is a [i]winner [/i] if it can be written as the sum of a perfect square plus a perfect cube. For example, $33$ is a winner because $33=5^2+2^3$ . Gabriel chooses two positive integers, r and s, and Germán must find $2005$ positive integers $n$ such that for each $n$, the numbers $r+n$ and $s+n$ are winners. Prove that Germán can always achieve his goal.