Found problems: 25757
2014 Belarusian National Olympiad, 6
Points $C_1, A_1$ and $B_1$ are marked on the sides $AB, BC$ and $CA$ of a triangle $ABC$ so that the segments $AA_1, BB_1$, and $CC_1$ are concurrent (see the fig.). It is known that the area of the white part of the triangle $ABC$ is equal to the area of its black part. Prove that at least one of the segments $AA_1, BB_1, CC_1$ is a median of the triangle $ABC$.
[img]https://1.bp.blogspot.com/-nVVhqdRdf0s/X-WVmt_gyqI/AAAAAAAAM40/943sCRGyCPwT-vqIilTCtXOXHByRLIvPwCLcBGAsYHQ/s0/2014%2Bbelarus%2B11.6.png[/img]
2013 Iran Team Selection Test, 13
$P$ is an arbitrary point inside acute triangle $ABC$. Let $A_1,B_1,C_1$ be the reflections of point $P$ with respect to sides $BC,CA,AB$. Prove that the centroid of triangle $A_1B_1C_1$ lies inside triangle $ABC$.
1996 Irish Math Olympiad, 4
In an acute-angled triangle $ ABC$, $ D,E,F$ are the feet of the altitudes from $ A,B,C$, respectively, and $ P,Q,R$ are the feet of the perpendiculars from $ A,B,C$ onto $ EF,FD,DE$, respectively. Prove that the lines $ AP,BQ,CR$ are concurrent.
1999 Harvard-MIT Mathematics Tournament, 7
If a right triangle is drawn in a semicircle of radius $1/2$ with one leg (not the hypotenuse) along the diameter, what is the triangle's maximum possible area?
2003 Germany Team Selection Test, 2
Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.
Novosibirsk Oral Geo Oly IX, 2021.4
A semicircle of radius $5$ and a quarter of a circle of radius $8$ touch each other and are located inside the square as shown in the figure. Find the length of the part of the common tangent, enclosed in the same square.
[img]https://cdn.artofproblemsolving.com/attachments/f/2/010f501a7bc1d34561f2fe585773816f168e93.png[/img]
2005 Sharygin Geometry Olympiad, 8
Around the convex quadrilateral $ABCD$, three rectangles are circumscribed .
It is known that two of these rectangles are squares. Is it true that the third one is necessarily a square?
(A rectangle is circumscribed around the quadrilateral $ABCD$ if there is one vertex $ABCD$ on each side of the rectangle).
1951 AMC 12/AHSME, 6
The bottom, side, and front areas of a rectangular box are known. The product of these areas is equal to:
$ \textbf{(A)}\ \text{the volume of the box} \qquad\textbf{(B)}\ \text{the square root of the volume} \qquad\textbf{(C)}\ \text{twice the volume}$
$ \textbf{(D)}\ \text{the square of the volume} \qquad\textbf{(E)}\ \text{the cube of the volume}$
Kvant 2025, M2837
On the graphic of the function $y=x^2$ were selected $1000$ pairwise distinct points, abscissas of which are integer numbers from the segment $[0; 100000]$. Prove that it is possible to choose six different selected points $A$, $B$, $C$, $A'$, $B'$, $C'$ such that areas of triangles $ABC$ and $A'B'C'$ are equals.
[i]A. Tereshin[/i]
2023 Sharygin Geometry Olympiad, 10.8
A triangle $ABC$ is given. Let $\omega_1$, $\omega_2$, $\omega_3$, $\omega_4$ be circles centered at points $X$, $Y$, $Z$, $T$ respectively such that each of lines $BC$, $CA$, $AB$ cuts off on them four equal chords. Prove that the centroid of $ABC$ divides the segment joining $X$ and the radical center of $\omega_2$, $\omega_3$, $\omega_4$ in the ratio $2:1$ from $X$.
2020 MOAA, General
[b]p1.[/b] What is $20\times 20 - 19\times 19$?
[b]p2.[/b] Andover has a total of $1440$ students and teachers as well as a $1 : 5$ teacher-to-student ratio (for every teacher, there are exactly $5$ students). In addition, every student is either a boarding student or a day student, and $70\%$ of the students are boarding students. How many day students does Andover have?
[b]p3.[/b] The time is $2:20$. If the acute angle between the hour hand and the minute hand of the clock measures $x$ degrees, find $x$.
[img]https://cdn.artofproblemsolving.com/attachments/b/a/a18b089ae016b15580ec464c3e813d5cb57569.png[/img]
[b]p4.[/b] Point $P$ is located on segment $AC$ of square $ABCD$ with side length $10$ such that $AP >CP$. If the area of quadrilateral $ABPD$ is $70$, what is the area of $\vartriangle PBD$?
[b]p5.[/b] Andrew always sweetens his tea with sugar, and he likes a $1 : 7$ sugar-to-unsweetened tea ratio. One day, he makes a $100$ ml cup of unsweetened tea but realizes that he has run out of sugar. Andrew decides to borrow his sister's jug of pre-made SUPERSWEET tea, which has a $1 : 2$ sugar-to-unsweetened tea ratio. How much SUPERSWEET tea, in ml,does Andrew need to add to his unsweetened tea so that the resulting tea is his desired sweetness?
[b]p6.[/b] Jeremy the architect has built a railroad track across the equator of his spherical home planet which has a radius of exactly $2020$ meters. He wants to raise the entire track $6$ meters off the ground, everywhere around the planet. In order to do this, he must buymore track, which comes from his supplier in bundles of $2$ meters. What is the minimum number of bundles he must purchase? Assume the railroad track was originally built on the ground.
[b]p7.[/b] Mr. DoBa writes the numbers $1, 2, 3,..., 20$ on the board. Will then walks up to the board, chooses two of the numbers, and erases them from the board. Mr. DoBa remarks that the average of the remaining $18$ numbers is exactly $11$. What is the maximum possible value of the larger of the two numbers that Will erased?
[b]p8.[/b] Nathan is thinking of a number. His number happens to be the smallest positive integer such that if Nathan doubles his number, the result is a perfect square, and if Nathan triples his number, the result is a perfect cube. What is Nathan's number?
[b]p9.[/b] Let $S$ be the set of positive integers whose digits are in strictly increasing order when read from left to right. For example, $1$, $24$, and $369$ are all elements of $S$, while $20$ and $667$ are not. If the elements of $S$ are written in increasing order, what is the $100$th number written?
[b]p10.[/b] Find the largest prime factor of the expression $2^{20} + 2^{16} + 2^{12} + 2^{8} + 2^{4} + 1$.
[b]p11.[/b] Christina writes down all the numbers from $1$ to $2020$, inclusive, on a whiteboard. What is the sum of all the digits that she wrote down?
[b]p12.[/b] Triangle $ABC$ has side lengths $AB = AC = 10$ and $BC = 16$. Let $M$ and $N$ be the midpoints of segments $BC$ and $CA$, respectively. There exists a point $P \ne A$ on segment $AM$ such that $2PN = PC$. What is the area of $\vartriangle PBC$?
[b]p13.[/b] Consider the polynomial $$P(x) = x^4 + 3x^3 + 5x^2 + 7x + 9.$$ Let its four roots be $a, b, c, d$. Evaluate the expression $$(a + b + c)(a + b + d)(a + c + d)(b + c + d).$$
[b]p14.[/b] Consider the system of equations $$|y - 1| = 4 -|x - 1|$$
$$|y| =\sqrt{|k - x|}.$$ Find the largest $k$ for which this system has a solution for real values $x$ and $y$.
[b]p16.[/b] Let $T_n = 1 + 2 + ... + n$ denote the $n$th triangular number. Find the number of positive integers $n$ less than $100$ such that $n$ and $T_n$ have the same number of positive integer factors.
[b]p17.[/b] Let $ABCD$ be a square, and let $P$ be a point inside it such that $PA = 4$, $PB = 2$, and $PC = 2\sqrt2$. What is the area of $ABCD$?
[b]p18.[/b] The Fibonacci sequence $\{F_n\}$ is defined as $F_0 = 0$, $F_1 = 1$, and $F_{n+2}= F_{n+1} + F_n$ for all integers $n \ge 0$. Let $$ S =\dfrac{1}{F_6 + \frac{1}{F_6}}+\dfrac{1}{F_8 + \frac{1}{F_8}}+\dfrac{1}{F_{10} +\frac{1}{F_{10}}}+\dfrac{1}{F_{12} + \frac{1}{F_{12}}}+ ... $$ Compute $420S$.
[b]p19.[/b] Let $ABCD$ be a square with side length $5$. Point $P$ is located inside the square such that the distances from $P$ to $AB$ and $AD$ are $1$ and $2$ respectively. A point $T$ is selected uniformly at random inside $ABCD$. Let $p$ be the probability that quadrilaterals $APCT$ and $BPDT$ are both not self-intersecting and have areas that add to no more than $10$. If $p$ can be expressed in the form $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, find $m + n$.
Note: A quadrilateral is self-intersecting if any two of its edges cross.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2005 USA Team Selection Test, 5
Find all finite sets $S$ of points in the plane with the following property: for any three distinct points $A,B,$ and $C$ in $S,$ there is a fourth point $D$ in $S$ such that $A,B,C,$ and $D$ are the vertices of a parallelogram (in some order).
2021 Latvia Baltic Way TST, P12
Five points $A,B,C,P,Q$ are chosen so that $A,B,C$ aren't collinear. The following length conditions hold: $\frac{AP}{BP}=\frac{AQ}{BQ}=\frac{21}{20}$ and $\frac{BP}{CP}=\frac{BQ}{CQ}=\frac{20}{19}$. Prove that line $PQ$ goes through the circumcentre of $\triangle ABC$.
1981 All Soviet Union Mathematical Olympiad, 312
The points $K$ and $M$ are the centres of the $AB$ and $CD$ sides of the convex quadrangle $ABCD$. The points $L$ and $M$ belong to two other sides and $KLMN$ is a rectangle. Prove that $KLMN$ area is a half of $ABCD$ area.
1949-56 Chisinau City MO, 25
Show that the straight lines passing through the feet of the altitudes of an acute-angled triangle form a triangle in which the altitudes of the original triangle are angle bisectors.
2013 Czech-Polish-Slovak Junior Match, 3
The $ABCDE$ pentagon is inscribed in a circle and $AB = BC = CD$. Segments $AC$ and $BE$ intersect at $K$, and Segments $AD$ and $CE$ intersect at point$ L$. Prove that $AK = KL$.
2022 ABMC, Speed
[i]25 problems for 30 minutes[/i]
[b]p1.[/b] Alisha has $6$ cupcakes and Tyrone has $10$ brownies. Tyrone gives some of his brownies to Alisha so that she has three times as many desserts as Tyrone. How many desserts did Tyrone give to Alisha?
[b]p2.[/b] Bisky adds one to her favorite number. She then divides the result by $2$, and gets $56$. What is her favorite number?
[b]p3.[/b] What is the maximum number of points at which a circle and a square can intersect?
[b]p4.[/b] An integer $N$ leaves a remainder of 66 when divided by $120$. Find the remainder when $N$ is divided by $24$.
[b]p5.[/b] $7$ people are chosen to run for student council. How many ways are there to pick $1$ president, $1$ vice president, and $1$ secretary?
[b]p6.[/b] Anya, Beth, Chloe, and Dmitri are all close friends, and like to make group chats to talk. How many group chats can be made if Dmitri, the gossip, must always be in the group chat and Anya is never included in them? Group chats must have more than one person.
[b]p7.[/b] There exists a telephone pole of height $24$ feet. From the top of this pole, there are two wires reaching the ground in opposite directions, with one wire $25$ feet, and the other wire 40 feet. What is the distance (in feet) between the places where the wires hit the ground?
[b]p8.[/b] Tarik is dressing up for a job-interview. He can wear a chill, business, or casual outfit. If he wears a chill oufit, he must wear a t-shirt, shorts, and flip-flops. He has eight of the first, seven of the second, and three of the third. If he wears a business outfit, he must wear a blazer, a tie, and khakis; he has two of the first, six of the second, and five of the third; finally, he can also choose the casual style, for which he has three hoodies, nine jeans, and two pairs of sneakers. How many different combinations are there for his interview?
[b]p9.[/b] If a non-degenerate triangle has sides $11$ and $13$, what is the sum of all possibilities for the third side length, given that the third side has integral length?
[b]p10.[/b] An unknown disease is spreading fast. For every person who has the this illness, it is spread on to $3$ new people each day. If Mary is the only person with this illness at the start of Monday, how many people will have contracted the illness at the end of Thursday?
[b]p11.[/b] Gob the giant takes a walk around the equator on Mars, completing one lap around Mars. If Gob’s head is $\frac{13}{\pi}$ meters above his feet, how much farther (in meters) did his head travel than his feet?
[b]p12.[/b] $2022$ leaves a remainder of $2$, $6$, $9$, and $7$ when divided by $4$, $7$, $11$, and $13$ respectively. What is the next positive integer which has the same remainders to these divisors?
[b]p13.[/b] In triangle $ABC$, $AB = 20$, $BC = 21$, and $AC = 29$. Let D be a point on $AC$ such that $\angle ABD = 45^o$. If the length of $AD$ can be represented as $\frac{a}{b}$ , what is $a + b$?
[b]p14.[/b] Find the number of primes less than $100$ such that when $1$ is added to the prime, the resulting number has $3$ divisors.
[b]p15.[/b] What is the coefficient of the term $a^4z^3$ in the expanded form of $(z - 2a)^7$?
[b]p16.[/b] Let $\ell$ and $m$ be lines with slopes $-2$, $1$ respectively. Compute $|s_1 \cdot s_2|$ if $s_1$, $s_2$ represent the slopes of the two distinct angle bisectors of $\ell$ and $m$.
[b]p17.[/b] R1D2, Lord Byron, and Ryon are creatures from various planets. They are collecting monkeys for King Avanish, who only understands octal (base $8$). R1D2 only understands binary (base $2$), Lord Byron only understands quarternary (base $4$), and Ryon only understands decimal (base $10$). R1D2 says he has $101010101$ monkeys and adds his monkey to the pile. Lord Byron says he has $3231$ monkeys and adds them to the pile. Ryon says he has $576$ monkeys and adds them to the pile. If King Avanish says he has $x$ monkeys, what is the value of $x$?
[b]p18.[/b] A quadrilateral is defined by the origin, $(3, 0)$, $(0, 10)$, and the vertex of the graph of $y = x^2 -8x+22$. What is the area of this quadrilateral?
[b]p19.[/b] There is a sphere-container, filled to the brim with fruit punch, of diameter $6$. The contents of this container are poured into a rectangular prism container, again filled to the brim, of dimensions $2\pi$ by $4$ by $3$. However, there is an excess amount in the original container. If all the excess drink is poured into conical containers with diameter $4$ and height $3$, how many containers will be used?
[b]p20.[/b] Brian is shooting arrows at a target, made of concurrent circles of radius $1$, $2$, $3$, and $4$. He gets $10$ points for hitting the innermost circle, $8$ for hitting between the smallest and second smallest circles, $5$ for between the second and third smallest circles, $2$ points for between the third smallest and outermost circle, and no points for missing the target. Assume for each shot he takes, there is a $20\%$ chance Brian will miss the target, but otherwise the chances of hitting each target are proportional to the area of the region. The chance that after three shots, Brian will have scored $15$ points can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. Find $m + n$.
[b]p21.[/b] What is the largest possible integer value of $n$ such that $\frac{2n^3+n^2+7n-15}{2n+1}$ is an integer?
[b]p22.[/b] Let $f(x, y) = x^3 + x^2y + xy^2 + y^3$. Compute $f(0, 2) + f(1, 3) +... f(9, 11).$
[b]p23.[/b] Let $\vartriangle ABC$ be a triangle. Let $AM$ be a median from $A$. Let the perpendicular bisector of segment $\overline{AM}$ meet $AB$ and $AC$ at $D$, $E$ respectively. Given that $AE = 7$, $ME = MC$, and $BDEC$ is cyclic, then compute $AM^2$.
[b]p24.[/b] Compute the number of ordered triples of positive integers $(a, b, c)$ such that $a \le 10$, $b \le 11$, $c \le 12$ and $a > b - 1$ and $b > c - 1$.
[b]p25.[/b] For a positive integer $n$, denote by $\sigma (n)$ the the sum of the positive integer divisors of $n$. Given that $n + \sigma (n)$ is odd, how many possible values of $n$ are there from $1$ to $2022$, inclusive?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022 Polish MO Finals, 5
Let $ABC$ be a triangle satisfying $AB<AC$. Let $M$ be the midpoint of $BC$. A point $P$ lies on the segment $AB$ with $AP>PB$. A point $Q$ lies on the segment $AC$ with $\angle MPA = \angle AQM$. The perpendicular bisectors of $BC$ and $PQ$ intersect at $S$. Prove that $\angle BAC + \angle QSP = \angle QMP$.
2000 May Olympiad, 3
Let $S$ be a circle with radius $2$, let $S_1$ be a circle,with radius $1$ and tangent, internally to $S$ in $B$ and let $S_2$ be a circle, with radius $1$ and tangent to $S_1$ in $A$, but $S_2$ isn't tangent to $S$. If $K$ is the point of intersection of the line $AB$ and the circle $S$, prove that $K$ is in the circle $S_2$.
2016 PUMaC Team, 9
Let $\vartriangle ABC$ be a right triangle with $AB = 4, BC = 5$, and hypotenuse $AC$. Let I be the incenter of $\vartriangle ABC$ and $E$ be the excenter of $\vartriangle ABC$ opposite $A$ (the center of the circle tangent to $BC$ and the extensions of segments $AB$ and $AC$). Suppose the circle with diameter $IE$ intersects line $AB$ beyond $B$ at $D$. If $BD =\sqrt{a}- b$, where a and b are positive integers. Find $a + b$.
2018 China Northern MO, 3
$A,B,C,D,E$ lie on $\odot O$ in that order,and $$BD \cap CE=F,CE \cap AD=G,AD \cap BE=H,BE \cap AC=I,AC \cap BD=J.$$ Prove that $\frac{FG}{CE}=\frac{GH}{DA}=\frac{HI}{BE}=\frac{IJ}{AC}=\frac{JF}{BD}$ when and only when $F,G,H,I,J$ are concyclic.
Maryland University HSMC part II, 2005
[b]p1.[/b] The three little pigs are learning about fractions. They particularly like the number x = $1/5$, because when they add the denominator to the numerator, add the denominator to the denominator, and form a new fraction, they obtain $6/10$, which equals $3x$ (so each little pig can have his own $x$). The $101$ Dalmatians hear about this and want their own fraction. Your job is to help them.
(a) Find a fraction $y$ such that when the denominator is added to the numerator and also added to the denominator, the result is $101y$.
(b) Prove that the fraction $y$ (put into lowest terms) in part (a) is the only fraction in lowest terms with this property.
[b]p2.[/b] A small kingdom consists of five square miles. The king, who is not very good at math, wants to divide the kingdom among his $9$ sons. He tells each son to mark out a region of $1$ square mile. Prove that there are two sons whose regions overlap by at least $1/9$ square mile.
[b]p3.[/b] Let $\pi (n)$ be the number of primes less than or equal to n. Sometimes $n$ is a multiple of $\pi (n)$. It is known that $\pi (4) = 2$ (because of the two primes $2, 3$) and $\pi (64540) = 6454$. Show that there exists an integer $n$, with $4 < n < 64540$, such that $\pi (n) = n/8$.
[b]p4.[/b] Two circles of radii $R$ and $r$ are externally tangent at a point $A$. Their common external tangent is tangent to the circles at $B$ and $C$. Calculate the lengths of the sides of triangle $ABC$ in terms of $R$ and $r$.
[img]https://cdn.artofproblemsolving.com/attachments/e/a/e5b79cb7c41e712602ec40edc037234468b991.png[/img]
[b]p5.[/b] There are $2005$ people at a meeting. At the end of the meeting, each person who has shaken hands with at most $10$ people is given a red T-shirt with the message “I am unfriendly.” Then each person who has shaken hands only with people who received red T-shirts is given a blue T-shirt with the message “All of my friends are unfriendly.” (Some lucky people might get both red and blue T-shirts, for example, those who shook no one’s hand.) Prove that the number of people who received blue T-shirts is less than or equal to the number of people who received red T-shirts.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 Greece Junior Math Olympiad, 2
Consider an acute triangle $ABC$ and it's circumcircle $\omega$. With center $A$, we construct a circle $\gamma$ that intersects arc $AB$ of circle $\omega$ , that doesn't contain $C$, at point $D$ and arc $AC$ , that doesn't contain $B$, at point $E$. Suppose that the intersection point $K$ of lines $BE$ and $CD$ lies on circle $\gamma$. Prove that line $AK$ is perpendicular on line $BC$.
2012 India IMO Training Camp, 1
Let $ABC$ be a triangle with $AB=AC$ and let $D$ be the midpoint of $AC$. The angle bisector of $\angle BAC$ intersects the circle through $D,B$ and $C$ at the point $E$ inside the triangle $ABC$. The line $BD$ intersects the circle through $A,E$ and $B$ in two points $B$ and $F$. The lines $AF$ and $BE$ meet at a point $I$, and the lines $CI$ and $BD$ meet at a point $K$. Show that $I$ is the incentre of triangle $KAB$.
[i]Proposed by Jan Vonk, Belgium and Hojoo Lee, South Korea[/i]
1982 Putnam, B1
Let $M$ be the midpoint of side $BC$ of $\triangle ABC$. Using the [i]smallest possible[/i] $n$, described a method for cutting $\triangle AMB$ into $n$ triangles which can be reassembled to form a triangle congruent to $\triangle AMC$.