Found problems: 25757
2024 Taiwan TST Round 2, G
Let $ABC$ be a triangle and $D$ be a point inside triangle $ABC$. $\Gamma$ is the circumcircle of triangle $ABC$, and $DB$, $DC$ meet $\Gamma$ again at $E$, $F$ , respectively. $\Gamma_1$, $\Gamma_2$ are the circumcircles of triangle $ADE$ and $ADF$ respectively. Assume $X$ is on $\Gamma_2$ such that $BX$ is tangent to $\Gamma_2$. Let $BX$ meets $\Gamma$ again at $Z$. Prove that the line $CZ$ is tangent to $\Gamma_1$ .
[i]Proposed by HakureiReimu[/i].
2009 Tournament Of Towns, 2
Mike has $1000$ unit cubes. Each has $2$ opposite red faces, $2$ opposite blue faces and $2$ opposite white faces. Mike assembles them into a $10 \times 10 \times 10$ cube. Whenever two unit cubes meet face to face, these two faces have the same colour. Prove that an entire face of the $10 \times 10 \times 10$ cube has the same colour.
[i](6 points)[/i]
1992 Mexico National Olympiad, 6
$ABCD$ is a rectangle. $I$ is the midpoint of $CD$. $BI$ meets $AC$ at $M$. Show that the line $DM$ passes through the midpoint of $BC$. $E$ is a point outside the rectangle such that $AE = BE$ and $\angle AEB = 90^o$. If $BE = BC = x$, show that $EM$ bisects $\angle AMB$. Find the area of $AEBM$ in terms of $x$.
2024 Iranian Geometry Olympiad, 4
An inscribed $n$-gon ($n > 3$), is divided into $n-2$ triangles by diagonals which meet only in vertices. What is the maximum possible number of congruent triangles obtained?
(An inscribed $n$-gon is an $n$-gon where all its vertices lie on a circle)
[i]Proposed by Boris Frenkin - Russia[/i]
1997 AMC 12/AHSME, 19
A circle with center $ O$ is tangent to the coordinate axes and to the hypotenuse of the $ 30^\circ$-$ 60^\circ$-$ 90^\circ$ triangle $ ABC$ as shown, where $ AB \equal{} 1$. To the nearest hundredth, what is the radius of the circle?
[asy]defaultpen(linewidth(.8pt));
dotfactor=3;
pair A = origin;
pair B = (1,0);
pair C = (0,sqrt(3));
pair O = (2.33,2.33);
dot(A);dot(B);dot(C);dot(O);
label("$A$",A,SW);label("$B$",B,SE);label("$C$",C,W);label("$O$",O,NW);
label("$1$",midpoint(A--B),S);label("$60^\circ$",B,2W + N);
draw((3,0)--A--(0,3));
draw(B--C);
draw(Arc(O,2.33,163,288.5));[/asy]$ \textbf{(A)}\ 2.18\qquad \textbf{(B)}\ 2.24\qquad \textbf{(C)}\ 2.31\qquad \textbf{(D)}\ 2.37\qquad \textbf{(E)}\ 2.41$
1983 IMO Longlists, 65
Let $ABCD$ be a convex quadrilateral whose diagonals $AC$ and $BD$ intersect in a point $P$. Prove that
\[\frac{AP}{PC}=\frac{\cot \angle BAC + \cot \angle DAC}{\cot \angle BCA + \cot \angle DCA}\]
1993 National High School Mathematics League, 13
In triangular pyramid $S-ABC$, any two of $SA,SB,SC$ are perpendicular. $M$ is the centre of gravity of $\triangle ABC$. $D$ is the midpoint of $AB$, line $DP//SC$. Prove:
[b](a)[/b] $DP$ and $SM$ intersect.
[b](b)[/b] $DP\cap SM=D'$, then $D'$ is the center of circumsphere of $S-ABC$.
2009 Today's Calculation Of Integral, 476
Suppose a parabola with the axis as the $ y$ axis, concave up and touches the graph $ y\equal{}1\minus{}|x|$. Find the equation of the parabola such that the area of the region surrounded by the parabola and the $ x$ axis is maximal.
2023 Stanford Mathematics Tournament, R7
[b]p19.[/b] $A_1A_2...A_{12}$ is a regular dodecagon with side length $1$ and center at point $O$. What is the area of the region covered by circles $(A_1A_2O)$, $(A_3A_4O)$, $(A_5A_6O)$, $(A_7A_8O)$, $(A_9A_{10}O)$, and $(A_{11}A_{12}O)$?
$(ABC)$ denotes the circle passing through points $A,B$, and $C$.
[b]p20.[/b] Let $N = 2000... 0x0 ... 00023$ be a $2023$-digit number where the $x$ is the $23$rd digit from the right. If$ N$ is divisible by $13$, compute $x$.
[b]p21.[/b] Alice and Bob each visit the dining hall to get a grilled cheese at a uniformly random time between $12$ PM and $1$ PM (their arrival times are independent) and, after arrival, will wait there for a uniformly random amount of time between $0$ and $30$ minutes. What is the probability that they will meet?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 MOAA, Sets 7-12
[u]Set 7[/u]
[b]p19.[/b] Let circles $\omega_1$ and $\omega_2$, with centers $O_1$ and $O_2$, respectively, intersect at $X$ and $Y$ . A lies on $\omega_1$ and $B$ lies on $\omega_2$ such that $AO_1$ and $BO_2$ are both parallel to $XY$, and $A$ and $B$ lie on the same side of $O_1O_2$. If $XY = 60$, $\angle XAY = 45^o$, and $\angle XBY = 30^o$, then the length of $AB$ can be expressed in the form $\sqrt{a - b\sqrt2 + c\sqrt3}$, where $a, b, c$ are positive integers. Determine $a + b + c$.
[b]p20.[/b] If $x$ is a positive real number such that $x^{x^2}= 2^{80}$, find the largest integer not greater than $x^3$.
[b]p21.[/b] Justin has a bag containing $750$ balls, each colored red or blue. Sneaky Sam takes out a random number of balls and replaces them all with green balls. Sam notices that of the balls left in the bag, there are $15$ more red balls than blue balls. Justin then takes out $500$ of the balls chosen randomly. If $E$ is the expected number of green balls that Justin takes out, determine the greatest integer less than or equal to $E$.
[u]Set 8[/u]
These three problems are interdependent; each problem statement in this set will use the answers to the other two problems in this set. As such, let the positive integers $A, B, C$ be the answers to problems $22$, $23$, and $24$, respectively, for this set.
[b]p22.[/b] Let $WXYZ$ be a rectangle with $WX =\sqrt{5B}$ and $XY =\sqrt{5C}$. Let the midpoint of $XY$ be $M$ and the midpoint of $YZ$ be $N$. If $XN$ and $W Y$ intersect at $P$, determine the area of $MPNY$ .
[b]p23.[/b] Positive integers $x, y, z$ satisfy $$xy \equiv A \,\, (mod 5)$$
$$yz \equiv 2A + C\,\, (mod 7)$$
$$zx \equiv C + 3 \,\, (mod 9).$$ (Here, writing $a \equiv b \,\, (mod m)$ is equivalent to writing $m | a - b$.)
Given that $3 \nmid x$, $3 \nmid z$, and $9 | y$, find the minimum possible value of the product $xyz$.
[b]p24.[/b] Suppose $x$ and $y$ are real numbers such that $$x + y = A$$
$$xy =\frac{1}{36}B^2.$$ Determine $|x - y|$.
[u]Set 9[/u]
[b]p25. [/b]The integer $2017$ is a prime which can be uniquely represented as the sum of the squares of two positive integers: $$9^2 + 44^2 = 2017.$$ If $N = 2017 \cdot 128$ can be uniquely represented as the sum of the squares of two positive integers $a^2 +b^2$, determine $a + b$.
[b]p26.[/b] Chef Celia is planning to unveil her newest creation: a whole-wheat square pyramid filled with maple syrup. She will use a square flatbread with a one meter diagonal and cut out each of the five polygonal faces of the pyramid individually. If each of the triangular faces of the pyramid are to be equilateral triangles, the largest volume of syrup, in cubic meters, that Celia can enclose in her pyramid can be expressed as $\frac{a-\sqrt{b}}{c}$ where $a, b$ and $c$ are the smallest possible possible positive integers. What is $a + b + c$?
[b]p27.[/b] In the Cartesian plane, let $\omega$ be the circle centered at $(24, 7)$ with radius $6$. Points $P, Q$, and $R$ are chosen in the plane such that $P$ lies on $\omega$, $Q$ lies on the line $y = x$, and $R$ lies on the $x$-axis. The minimum possible value of $PQ+QR+RP$ can be expressed in the form $\sqrt{m}$ for some integer $m$. Find m.
[u]Set 10[/u]
[i]Deja vu?[/i]
[b]p28. [/b] Let $ABC$ be a triangle with incircle $\omega$. Let $\omega$ intersect sides $BC$, $CA$, $AB$ at $D, E, F$, respectively. Suppose $AB = 7$, $BC = 12$, and $CA = 13$. If the area of $ABC$ is $K$ and the area of $DEF$ is $\frac{m}{n}\cdot K$, where $m$ and $n$ are relatively prime positive integers, then compute $m + n$.
[b]p29.[/b] Sebastian is playing the game Split! again, but this time in a three dimensional coordinate system. He begins the game with one token at $(0, 0, 0)$. For each move, he is allowed to select a token on any point $(x, y, z)$ and take it off, replacing it with three tokens, one at $(x + 1, y, z)$, one at $(x, y + 1, z)$, and one at $(x, y, z + 1)$ At the end of the game, for a token on $(a, b, c)$, it is assigned a score $\frac{1}{2^{a+b+c}}$ . These scores are summed for his total score. If the highest total score Sebastian can get in $100$ moves is $m/n$, then determine $m + n$.
[b]p30.[/b] Determine the number of positive $6$ digit integers that satisfy the following properties:
$\bullet$ All six of their digits are $1, 5, 7$, or $8$,
$\bullet$ The sum of all the digits is a multiple of $5$.
[u]Set 11[/u]
[b]p31.[/b] The triangular numbers are defined as $T_n =\frac{n(n+1)}{2}$. We also define $S_n =\frac{n(n+2)}{3}$. If the sum $$\sum_{i=16}^{32} \left(\frac{1}{T_i}+\frac{1}{S_i}\right)= \left(\frac{1}{T_{16}}+\frac{1}{S_{16}}\right)+\left(\frac{1}{T_{17}}+\frac{1}{S_{17}}\right)+...+\left(\frac{1}{T_{32}}+\frac{1}{S_{32}}\right)$$ can be written in the form $a/b$ , where $a$ and $b$ are positive integers with $gcd(a, b) = 1$, then find $a + b$.
[b]p32.[/b] Farmer Will is considering where to build his house in the Cartesian coordinate plane. He wants to build his house on the line $y = x$, but he also has to minimize his travel time for his daily trip to his barnhouse at $(24, 15)$ and back. From his house, he must first travel to the river at $y = 2$ to fetch water for his animals. Then, he heads for his barnhouse, and promptly leaves for the long strip mall at the line $y =\sqrt3 x$ for groceries, before heading home. If he decides to build his house at $(x_0, y_0)$ such that the distance he must travel is minimized, $x_0$ can be written in the form $\frac{a\sqrt{b}-c}{d}$ , where $a, b, c, d$ are positive integers, $b$ is not divisible by the square of a prime, and $gcd(a, c, d) = 1$. Compute $a+b+c+d$.
[b]p33.[/b] Determine the greatest positive integer $n$ such that the following two conditions hold:
$\bullet$ $n^2$ is the difference of consecutive perfect cubes;
$\bullet$ $2n + 287$ is the square of an integer.
[u]Set 12[/u]
The answers to these problems are nonnegative integers that may exceed $1000000$. You will be awarded points as described in the problems.
[b]p34.[/b] The “Collatz sequence” of a positive integer n is the longest sequence of distinct integers $(x_i)_{i\ge 0}$ with $x_0 = n$ and $$x_{n+1} =\begin{cases} \frac{x_n}{2} & if \,\, x_n \,\, is \,\, even \\ 3x_n + 1 & if \,\, x_n \,\, is \,\, odd \end{cases}.$$ It is conjectured that all Collatz sequences have a finite number of elements, terminating at $1$. This has been confirmed via computer program for all numbers up to $2^{64}$. There is a unique positive integer $n < 10^9$ such that its Collatz sequence is longer than the Collatz sequence of any other positive integer less than $10^9$. What is this integer $n$?
An estimate of $e$ gives $\max\{\lfloor 32 - \frac{11}{3}\log_{10}(|n - e| + 1)\rfloor, 0\}$ points.
[b]p35.[/b] We define a graph $G$ as a set $V (G)$ of vertices and a set $E(G)$ of distinct edges connecting those vertices. A graph $H$ is a subgraph of $G$ if the vertex set $V (H)$ is a subset of $V (G)$ and the edge set $E(H)$ is a subset of $E(G)$. Let $ex(k, H)$ denote the maximum number of edges in a graph with $k$ vertices without a subgraph of $H$. If $K_i$ denotes a complete graph on $i$ vertices, that is, a graph with $i$ vertices and all ${i \choose 2}$ edges between them present, determine $$n =\sum_{i=2}^{2018} ex(2018, K_i).$$
An estimate of $e$ gives $\max\{\lfloor 32 - 3\log_{10}(|n - e| + 1)\rfloor, 0\}$ points.
[b]p36.[/b] Write down an integer between $1$ and $100$, inclusive. This number will be denoted as $n_i$ , where your Team ID is $i$. Let $S$ be the set of Team ID’s for all teams that submitted an answer to this problem. For every ordered triple of distinct Team ID’s $(a, b, c)$ such that a, b, c ∈ S, if all roots of the polynomial $x^3 + n_ax^2 + n_bx + n_c$ are real, then the teams with ID’s $a, b, c$ will each receive one virtual banana.
If you receive $v_b$ virtual bananas in total and $|S| \ge 3$ teams submit an answer to this problem, you will be awarded $$\left\lfloor \frac{32v_b}{3(|S| - 1)(|S| - 2)}\right\rfloor$$ points for this problem. If $|S| \le 2$, the team(s) that submitted an answer to this problem will receive $32$ points for this problem.
PS. You had better use hide for answers. First sets have been posted [url=https://artofproblemsolving.com/community/c4h2777264p24369138]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 Germany Team Selection Test, 2
Let $ABCD$ be a convex cyclic quadrilateral with $AD=BD$. The diagonals $AC$ and $BD$ intersect in $E$. Let the incenter of triangle $\triangle BCE$ be $I$. The circumcircle of triangle $\triangle BIE$ intersects side $AE$ in $N$.
Prove
\[ AN \cdot NC = CD \cdot BN. \]
2025 Macedonian TST, Problem 5
Let $\triangle ABC$ be a triangle with side‐lengths $a,b,c$, incenter $I$, and circumradius $R$. Denote by $P$ the area of $\triangle ABC$, and let $P_1,\;P_2,\;P_3$ be the areas of triangles $\triangle ABI$, $\triangle BCI$, and $\triangle CAI$, respectively. Prove that
\[
\frac{abc}{12R}
\;\le\;
\frac{P_1^2 + P_2^2 + P_3^2}{P}
\;\le\;
\frac{3R^3}{4\sqrt[3]{abc}}.
\]
ABMC Online Contests, 2022 Dec
[b]p1.[/b] If $A = 0$, $B = 1$, $C = 2$, $...$, $Z = 25$, then what is the sum of $A + B + M+ C$?
[b]p2.[/b] Eric is playing Tetris against Bryan. If Eric wins one-fifth of the games he plays and he plays $15$ games, find the expected number of games Eric will win.
[b]p3.[/b] What is the sum of the measures of the exterior angles of a regular $2023$-gon in degrees?
[b]p4.[/b] If $N$ is a base $10$ digit of $90N3$, what value of $N$ makes this number divisible by $477$?
[b]p5.[/b] What is the rightmost non-zero digit of the decimal expansion of $\frac{1}{2^{2023}}$ ?
[b]p6.[/b] if graphs of $y = \frac54 x + m$ and $y = \frac32 x + n$ intersect at $(16, 27)$, what is the value of $m + n$?
[b]p7.[/b] Bryan is hitting the alphabet keys on his keyboard at random. If the probability he spells out ABMC at least once after hitting $6$ keys is $\frac{a}{b^c}$ , for positive integers $a$, $b$, $c$ where $b$, $c$ are both as small as possible, find $a+b+c$. Note that the letters ABMC must be adjacent for it to count: AEBMCC should not be considered as correctly spelling out ABMC.
[b]p8.[/b] It takes a Daniel twenty minutes to change a light bulb. It takes a Raymond thirty minutes to change a light bulb. It takes a Bryan forty-five minutes to change a light bulb. In the time that it takes two Daniels, three Raymonds, and one and a half Bryans to change $42$ light bulbs, how many light bulbs could half a Raymond change? Assume half a person can work half as productively as a whole person.
[b]p9.[/b] Find the value of $5a + 4b + 3c + 2d + e$ given $a, b, c, d, e$ are real numbers satisfying the following equations: $$a^2 = 2e + 23$$
$$b^2 = 10a - 34$$
$$c^2 = 8b - 23$$
$$d^2 = 6c - 14$$
$$e^2 = 4d - 7.$$
[b]p10.[/b] How many integers between $1$ and $1000$ contain exactly two $1$’s when written in base $2$?
[b]p11.[/b] Joe has lost his $2$ sets of keys. However, he knows that he placed his keys in one of his $12$ mailboxes, each labeled with a different positive integer from $1$ to $12$. Joe plans on opening the $2$ mailbox labeled $1$ to see if any of his keys are there. However, a strong gust of wind blows by, opening mailboxes $11$ and $12$, revealing that they are empty. If Joe decides to open one of the mailboxes labeled $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$ , or $10$, the probability that he finds at least one of his sets of keys can be expressed as $\frac{a}{b}$, where a and b are relatively prime positive integers. Find the sum $a + b$. Note that a single mailbox can contain $0$, $1$, or $2$ sets of keys, and the mailboxes his sets of keys were placed in are determined independently at random.
[b]p12.[/b] As we all know, the top scientists have recently proved that the Earth is a flat disc. Bob is standing on Earth. If he takes the shortest path to the edge, he will fall off after walking $1$ meter. If he instead turns $90$ degrees away from the shortest path and walks towards the edge, he will fall off after $3$ meters. Compute the radius of the Earth.
[b]p13.[/b] There are $999$ numbers that are repeating decimals of the form $0.abcabcabc...$ . The sum of all of the numbers of this form that do not have a $1$ or $2$ in their decimal representation can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a$, $b$. Find $a + b$.
[b]p14.[/b] An ant is crawling along the edges of a sugar cube. Every second, it travels along an edge to another adjacent vertex randomly, interested in the sugar it notices. Unfortunately, the cube is about to be added to some scalding coffee! In $10$ seconds, it must return to its initial vertex, so it can get off and escape. If the probability the ant will avoid a tragic doom can be expressed as $\frac{a}{3^{10}}$ , where $a$ is a positive integer, find $a$.
Clarification: The ant needs to be on its initial vertex in exactly $10$ seconds, no more or less.
[b]p15.[/b] Raymond’s new My Little Pony: Friendship is Magic Collector’s book arrived in the mail! The book’s pages measure $4\sqrt3$ inches by $12$ inches, and are bound on the longer side. If Raymond keeps one corner in the same plane as the book, what is the total area one of the corners can travel without ripping the page? If the desired area in square inches is $a\pi+b\sqrt{c}$ where $a$, $b$, and $c$ are integers and $c$ is squarefree, find $a + b + c$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 Belarus Team Selection Test, 2
Points $L$ and $H$ are marked on the sides $AB$ of an acute-angled triangle ABC so that $CL$ is a bisector and $CH$ is an altitude. Let $P,Q$ be the feet of the perpendiculars from $L$ to $AC$ and $BC$ respectively. Prove that $AP \cdot BH = BQ \cdot AH$.
I. Gorodnin
2012 Today's Calculation Of Integral, 816
Find the volume of the solid of a circle $x^2+(y-1)^2=4$ generated by a rotation about the $x$-axis.
2013 USAJMO, 3
In triangle $ABC$, points $P$, $Q$, $R$ lie on sides $BC$, $CA$, $AB$ respectively. Let $\omega_A$, $\omega_B$, $\omega_C$ denote the circumcircles of triangles $AQR$, $BRP$, $CPQ$, respectively. Given the fact that segment $AP$ intersects $\omega_A$, $\omega_B$, $\omega_C$ again at $X$, $Y$, $Z$, respectively, prove that $YX/XZ=BP/PC$.
2019 Novosibirsk Oral Olympiad in Geometry, 2
Kikoriki live on the shores of a pond in the form of an equilateral triangle with a side of $600$ m, Krash and Wally live on the same shore, $300$ m from each other. In summer, Dokko to Krash walk $900$ m, and Wally to Rosa - also $900$ m. Prove that in winter, when the pond freezes and it will be possible to walk directly on the ice, Dokko will walk as many meters to Krash as Wally to Rosa.
[url=https://en.wikipedia.org/wiki/Kikoriki]about Kikoriki/GoGoRiki / Smeshariki [/url]
2023 Romanian Master of Mathematics Shortlist, G1
Let $ABC$ be a triangle with incentre $I$ and circumcircle $\omega$. The incircle of the triangle $ABC$
touches the sides $BC$, $CA$ and $AB$ at $D$, $E$ and $F$, respectively. The circumcircle of triangle $ADI$ crosses $\omega$ again at $P$, and the lines $PE$ and $PF$ cross $\omega$ again at $X$and $Y$, respectively. Prove that the lines $AI$, $BX$ and $CY$ are concurrent.
1995 Poland - First Round, 4
A line tangent to the incircle of the equilateral triangle ABC intersects the sides AB and BC at points D and E respectively. Prove that
$\frac{AD}{DB}+\frac{AE}{EC} = 1$.
2020 Indonesia Juniors, day 1
p1. Let $AB$ be the diameter of the circle and $P$ is a point outside the circle. The lines $PQ$ and $PR$ are tangent to the circles at points $Q$ and $R$. The lines $PH$ is perpendicular on line $AB$ at $H$ . Line $PH$ intersects $AR$ at $S$. If $\angle QPH =40^o$ and $\angle QSA =30^o$, find $\angle RPS$.
p2. There is a meeting consisting of $40$ seats attended by $16$ invited guests. If each invited guest must be limited to at least $ 1$ chair, then determine the number of arrangements.
p3. In the crossword puzzle, in the following crossword puzzle, each box can only be filled with numbers from $ 1$ to $9$.
[img]https://cdn.artofproblemsolving.com/attachments/2/e/224b79c25305e8ed9a8a4da51059f961b9fbf8.png[/img]
Across:
1. Composite factor of $1001$
3. Non-polyndromic numbers
5. $p\times q^3$, with $p\ne q$ and $p,q$ primes
Down:
1. $a-1$ and $b+1$ , $a\ne b$ and $p,q$ primes
2. multiple of $9$
4. $p^3 \times q$, with $p\ne q$ and $p,q$ primes
p4. Given a function $f:R \to R$ and a function $g:R \to R$, so that it fulfills the following figure:
[img]https://cdn.artofproblemsolving.com/attachments/b/9/fb8e4e08861a3572412ae958828dce1c1e137a.png[/img]
Find the number of values of $x$, such that $(f(x))^2-2g(x)-x \in\{-10,-9,-8,…,9,10\}$.
p5. In a garden that is rectangular in shape, there is a watchtower in each corner and in the garden there is a monitoring tower. Small areas will be made in the shape of a triangle so that the corner points are towers (free of monitoring and/or supervisory towers). Let $k(m,n)$ be the number of small areas created if there are $m$ control towers and $n$ monitoring towers.
a. Find the values of $k(4,1)$, $k(4,2)$, $k(4,3)$, and $k(4,4)$
b. Find the general formula $k(m,n)$ with $m$ and $n$ natural numbers .
2012 Sharygin Geometry Olympiad, 2
Three parallel lines passing through the vertices $A, B$, and $C$ of triangle $ABC$ meet its circumcircle again at points $A_1, B_1$, and $C_1$ respectively. Points $A_2, B_2$, and $C_2$ are the reflections of points $A_1, B_1$, and $C_1$ in $BC, CA$, and $AB$ respectively. Prove that the lines $AA_2, BB_2, CC_2$ are concurrent.
(D.Shvetsov, A.Zaslavsky)
2020 Azerbaijan National Olympiad, 4
There is a non-equilateral triangle $ABC$.Let $ABC$'s Incentri $I$.Point $D$ is on the $BC$ side.The circle drawn outside the triangle $IBD$ and $ICD$ intersects the sides $AB$ and $AC$ at points $E$ and $F.$The circle drawn outside the triangle $DEF$ intersects the sides $AB$ and $AC$ at $N$ and $M$.Prove that $EM\parallel FN $.
2014 Bosnia Herzegovina Team Selection Test, 3
Let $D$ and $E$ be foots of altitudes from $A$ and $B$ of triangle $ABC$, $F$ be intersection point of angle bisector from $C$ with side $AB$, and $O$, $I$ and $H$ be circumcenter, center of inscribed circle and orthocenter of triangle $ABC$, respectively. If $\frac{CF}{AD}+ \frac{CF}{BE}=2$, prove that $OI = IH$.
2021 Germany Team Selection Test, 2
Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$.
Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.
2023 European Mathematical Cup, 3
Consider an acute-angled triangle $ABC$ with $AB < AC$. Let $M$ and $N$ be the midpoints of segments $BC$ and $AB$, respectively. The circle with diameter $AB$ intersects the lines $BC, AM$ and $AC$ at $D, E$, and $F$, respectively. Let $G$ be the midpoint of $FC$. Prove that the lines $NF, DE$ and $GM$ are concurrent.
[i]Michal Pecho[/i]