This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2018 Cyprus IMO TST, Source

[url=https://artofproblemsolving.com/community/c677808][b]Cyprus IMO TST 2018[/b][/url] [url=https://artofproblemsolving.com/community/c6h1666662p10591751][b]Problem 1.[/b][/url] Determine all integers $n \geq 2$ for which the number $11111$ in base $n$ is a perfect square. [url=https://artofproblemsolving.com/community/c6h1666663p10591753][b]Problem 2.[/b][/url] Consider a trapezium $AB \Gamma \Delta$, where $A\Delta \parallel B\Gamma$ and $\measuredangle A = 120^{\circ}$. Let $E$ be the midpoint of $AB$ and let $O_1$ and $O_2$ be the circumcenters of triangles $AE \Delta$ and $BE\Gamma$, respectively. Prove that the area of the trapezium is equal to six time the area of the triangle $O_1 E O_2$. [url=https://artofproblemsolving.com/community/c6h1666660p10591747][b]Problem 3.[/b][/url] Find all triples $(\alpha, \beta, \gamma)$ of positive real numbers for which the expression $$K = \frac{\alpha+3 \gamma}{\alpha + 2\beta + \gamma} + \frac{4\beta}{\alpha+\beta+2\gamma} - \frac{8 \gamma}{\alpha+ \beta + 3\gamma}$$obtains its minimum value. [url=https://artofproblemsolving.com/community/c6h1666661p10591749][b]Problem 4.[/b][/url] Let $\Lambda= \{1, 2, \ldots, 2v-1,2v\}$ and $P=\{\alpha_1, \alpha_2, \ldots, \alpha_{2v-1}, \alpha_{2v}\}$ be a permutation of the elements of $\Lambda$. (a) Prove that $$\sum_{i=1}^v \alpha_{2i-1}\alpha_{2i} \leq \sum_{i=1}^v (2i-1)2i.$$(b) Determine the largest positive integer $m$ such that we can partition the $m\times m$ square into $7$ rectangles for which every pair of them has no common interior points and their lengths and widths form the following sequence: $$1,2,3,4,5,6,7,8,9,10,11,12,13,14.$$

2023 All-Russian Olympiad Regional Round, 11.5

Tags: geometry
Given is a triangle $ABC$ with altitude $AH$ and median $AM$. The line $OH$ meets $AM$ at $D$. Let $AB \cap CD=E, AC \cap BD=F$. If $EH$ and $FH$ meet $(ABC)$ at $X, Y$, prove that $BY, CX, AH$ are concurrent.

1980 IMO Longlists, 4

Determine all positive integers $n$ such that the following statement holds: If a convex polygon with with $2n$ sides $A_1 A_2 \ldots A_{2n}$ is inscribed in a circle and $n-1$ of its $n$ pairs of opposite sides are parallel, which means if the pairs of opposite sides \[(A_1 A_2, A_{n+1} A_{n+2}), (A_2 A_3, A_{n+2} A_{n+3}), \ldots , (A_{n-1} A_n, A_{2n-1} A_{2n})\] are parallel, then the sides \[ A_n A_{n+1}, A_{2n} A_1\] are parallel as well.

2024 Argentina National Math Olympiad Level 3, 5

In triangle $ABC$, let $A'$, $B'$ and $C'$ be points on the sides $BC$, $CA$ and $AB$, respectively, such that$$\frac{BA'}{A'C}=\frac{CB'}{B'A}=\frac{AC'}{C'B}.$$ The line parallel to $B'C'$ passing through $A'$ intersects line $AC$ at $P$ and line $AB$ at $Q$. Prove that$$\frac{PQ}{B'C'} \geqslant 2.$$

1964 All Russian Mathematical Olympiad, 055

Let $ABCD$ be an tangential trapezoid, $E$ is a point of its diagonals intersection, $r_1,r_2,r_3,r_4$ -- the radiuses of the circles inscribed in the triangles $ABE$, $BCE$, $CDE$, $DAE$ respectively. Prove that $$1/(r_1)+1/(r_3) = 1/(r_2)+1/(r_4).$$

2016 Peru Cono Sur TST, P2

Let $\omega$ be a circle. For each $n$, let $A_n$ be the area of a regular $n$-sided polygon circumscribed to $\omega$ and $B_n$ the area of a regular $n$-sided polygon inscribed in $\omega$ . Try that $3A_{2015} + B_{2015}> 4A_{4030}$

1997 All-Russian Olympiad Regional Round, 10.2

Circles $S_1$ and $S_2$ intersect at points $M$ and $N$. Prove that if vertices $A$ and $ C$ of some rectangle $ABCD$ lie on the circle $S_1$, and the vertices $B$ and $D$ lie on the circle $S_2$, then the point of intersection of its diagonals lies on the line $MN$.

2005 Olympic Revenge, 5

Find all sets X of points in a plane, not all collinear, such that: For any two distinct circumferences, each contains three points of X, its intersection points are points of X.

2023 Bulgaria JBMO TST, 3

Let $ABC$ be a non-isosceles triangle with circumcircle $k$, incenter $I$ and $C$-excenter $I_C$. Let $M$ be the midpoint of $AB$ and $N$ be the midpoint of arc $\widehat{ACB}$ on $k$. Prove that $\angle IMI_C + \angle INI_C = 180^{\circ}$.

1999 Croatia National Olympiad, Problem 4

Tags: sequence , geometry
On the coordinate plane is given the square with vertices $T_1(1,0),T_2(0,1),T_3(-1,0),T_4(0,-1)$. For every $n\in\mathbb N$, point $T_{n+4}$ is defined as the midpoint of the segment $T_nT_{n+1}$. Determine the coordinates of the limit point of $T_n$ as $n\to\infty$, if it exists.

2003 AMC 8, 15

A fi gure is constructed from unit cubes. Each cube shares at least one face with another cube. What is the minimum number of cubes needed to build a fi gure with the front and side views shown? [asy] defaultpen(linewidth(0.8)); path p=unitsquare; draw(p^^shift(0,1)*p^^shift(1,0)*p); draw(shift(4,0)*p^^shift(5,0)*p^^shift(5,1)*p); label("FRONT", (1,0), S); label("SIDE", (5,0), S);[/asy] $ \textbf{(A)}\ 3\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 7$

2007 Harvard-MIT Mathematics Tournament, 1

A cube of edge length $s>0$ has the property that its surface area is equal to the sum of its volume and five times its edge length. Compute all possible values of $s$.

1996 Moldova Team Selection Test, 3

In triangle $ABC$ medians from $B$ and $C$ are perpendicular. Prove that $\frac{\sin(B+C)}{\sin B \cdot \sin C} \geq \frac{2}{3}.$

2009 Kazakhstan National Olympiad, 2

In triangle $ABC$ $AA_1; BB_1; CC_1$-altitudes. Let $I_1$ and $I_2$ be in-centers of triangles $AC_1B_1$ and $CA_1B_1$ respectively. Let in-circle of $ABC$ touch $AC$ in $B_2$. Prove, that quadrilateral $I_1I_2B_1B_2$ inscribed in a circle.

2007 Alexandru Myller, 3

Let $ ABC $ be a right angle in $ A, $ and $ M $ be the mid of $ BC. $ On the perpendicular of $ AM $ through $ A $ choose a point $ D $ so that $ DM $ meets $ AB $ at a point, namely $ P. $ Let $ E $ be the projection of $ D $ on $ BC. $ Show that $ \angle BPM =\angle EAC. $

2024 Sharygin Geometry Olympiad, 13

Tags: tiling , geometry
Can an arbitrary polygon be cut into isosceles trapezoids?

2024 Romanian Master of Mathematics, 5

Let $BC$ be a fixed segment in the plane, and let $A$ be a variable point in the plane not on the line $BC$. Distinct points $X$ and $Y$ are chosen on the rays $CA^\to$ and $BA^\to$, respectively, such that $\angle CBX = \angle YCB = \angle BAC$. Assume that the tangents to the circumcircle of $ABC$ at $B$ and $C$ meet line $XY$ at $P$ and $Q$, respectively, such that the points $X$, $P$, $Y$ and $Q$ are pairwise distinct and lie on the same side of $BC$. Let $\Omega_1$ be the circle through $X$ and $P$ centred on $BC$. Similarly, let $\Omega_2$ be the circle through $Y$ and $Q$ centred on $BC$. Prove that $\Omega_1$ and $\Omega_2$ intersect at two fixed points as $A$ varies. [i]Daniel Pham Nguyen, Denmark[/i]

2022 LMT Spring, 1

Tags: geometry
Kevin colors a ninja star on a piece of graph paper where each small square has area $1$ square inch. Find the area of the region colored, in square inches. [img]https://cdn.artofproblemsolving.com/attachments/3/3/86f0ae7465e99d3e4bd3a816201383b98dc429.png[/img]

1983 Austrian-Polish Competition, 3

Tags: disc , covering , geometry , area
A bounded planar region of area $S$ is covered by a finite family $F$ of closed discs. Prove that $F$ contains a subfamily consisting of pairwise disjoint discs, of joint area not less than $S/9$.

2004 Baltic Way, 20

Tags: geometry , ratio
Three fixed circles pass through the points $A$ and $B$. Let $X$ be a variable point on the first circle different from $A$ and $B$. The line $AX$ intersects the other two circles at $Y$ and $Z$ (with $Y$ between $X$ and $Z$). Show that the ratio $\frac{XY}{YZ}$ is independent of the position of $X$.

ABMC Speed Rounds, 2023

[i]25 problems for 30 minutes[/i] [b]p1.[/b] Compute $2^2 + 0 \cdot 0 + 2^2 + 3^3$. [b]p2.[/b] How many total letters (not necessarily distinct) are there in the names Jerry, Justin, Jackie, Jason, and Jeffrey? [b]p3.[/b] What is the remainder when $20232023$ is divided by $50$? [b]p4.[/b] Let $ABCD$ be a square. The fraction of the area of $ABCD$ that is the area of the intersection of triangles $ABD$ and $ABC$ can be expressed as $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$. [b]p5.[/b] Raymond is playing basketball. He makes a total of $15$ shots, all of which are either worth $2$ or $3$ points. Given he scored a total of $40$ points, how many $2$-point shots did he make? [b]p6.[/b] If a fair coin is flipped $4$ times, the probability that it lands on heads more often than tails is $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$. [b]p7.[/b] What is the sum of the perfect square divisors of $640$? [b]p8.[/b] A regular hexagon and an equilateral triangle have the same perimeter. The ratio of the area between the hexagon and equilateral triangle can be expressed in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$. [b]p9.[/b] If a cylinder has volume $1024\pi$, radius of $r$ and height $h$, how many ordered pairs of integers $(r, h)$ are possible? [b]p10.[/b] Pump $A$ can fill up a balloon in $3$ hours, while pump $B$ can fill up a balloon in $5$ hours. Pump $A$ starts filling up a balloon at $12:00$ PM, and pump $B$ is added alongside pump $A$ at a later time. If the balloon is completely filled at $2:00$ PM, how many minutes after $12:00$ PM was Pump $B$ added? [b]p11.[/b] For some positive integer $k$, the product $81 \cdot k$ has $20$ factors. Find the smallest possible value of $k$. [b]p12.[/b] Two people wish to sit in a row of fifty chairs. How many ways can they sit in the chairs if they do not want to sit directly next to each other and they do not want to sit with exactly one empty chair between them? [b]p13.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length $2$ and $M$ be the midpoint of $BC$. Let $P$ be a point in the same plane such that $2PM = BC$. The minimum value of $AP$ can be expressed as $\sqrt{a}-b$, where $a$ and $b$ are positive integers such that $a$ is not divisible by any perfect square aside from $1$. Find $a + b$. [b]p14.[/b] What are the $2022$nd to $2024$th digits after the decimal point in the decimal expansion of $\frac{1}{27}$ , expressed as a $3$ digit number in that order (i.e the $2022$nd digit is the hundreds digit, $2023$rd digit is the tens digit, and $2024$th digit is the ones digit)? [b]p15.[/b] After combining like terms, how many terms are in the expansion of $(xyz+xy+yz+xz+x+y+z)^{20}$? [b]p16.[/b] Let $ABCD$ be a trapezoid with $AB \parallel CD$ where $AB > CD$, $\angle B = 90^o$, and $BC = 12$. A line $k$ is dropped from $A$, perpendicular to line $CD$, and another line $\ell$ is dropped from $C$, perpendicular to line $AD$. $k$ and $\ell$ intersect at $X$. If $\vartriangle AXC$ is an equilateral triangle, the area of $ABCD$ can be written as $m\sqrt{n}$, where $m$ and $n$ are positive integers such that $n$ is not divisible by any perfect square aside from $1$. Find $m + n$. [b]p17.[/b] If real numbers $x$ and $y$ satisfy $2x^2 + y^2 = 8x$, maximize the expression $x^2 + y^2 + 4x$. [b]p18.[/b] Let $f(x)$ be a monic quadratic polynomial with nonzero real coefficients. Given that the minimum value of $f(x)$ is one of the roots of $f(x)$, and that $f(2022) = 1$, there are two possible values of $f(2023)$. Find the larger of these two values. [b]p19.[/b] I am thinking of a positive integer. After realizing that it is four more than a multiple of $3$, four less than a multiple of $4$, four more than a multiple of 5, and four less than a multiple of $7$, I forgot my number. What is the smallest possible value of my number? [b]p20.[/b] How many ways can Aston, Bryan, Cindy, Daniel, and Evan occupy a row of $14$ chairs such that none of them are sitting next to each other? [b]p21.[/b] Let $x$ be a positive real number. The minimum value of $\frac{1}{x^2} +\sqrt{x}$ can be expressed in the form \frac{a}{b^{(c/d)}} , where $a$, $b$, $c$, $d$ are all positive integers, $a$ and $b$ are relatively prime, $c$ and $d$ are relatively prime, and $b$ is not divisible by any perfect square. Find $a + b + c + d$. [b]p22.[/b] For all $x > 0$, the function $f(x)$ is defined as $\lfloor x \rfloor \cdot (x + \{x\})$. There are $24$ possible $x$ such that $f(x)$ is an integer between $2000$ and $2023$, inclusive. If the sum of these $24$ numbers equals $N$, then find $\lfloor N \rfloor$. Note: Recall that $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, called the floor function. Also, $\{x\}$ is defined as $x - \lfloor x \rfloor$, called the fractional part function. [b]p23.[/b] Let $ABCD$ be a rectangle with $AD = 1$. Let $P$ be a point on diagonal $\overline{AC}$, and let $\omega$ and $\xi$ be the circumcircles of $\vartriangle APB$ and $\vartriangle CPD$, respectively. Line $\overleftrightarrow{AD}$ is extended, intersecting $\omega$ at $X$, and $\xi$ at $Y$ . If $AX = 5$ and $DY = 2$, find $[ABCD]^2$. Note: $[ABCD]$ denotes the area of the polygon $ABCD$. [b]p24.[/b] Alice writes all of the three-digit numbers on a blackboard (it’s a pretty big blackboard). Let $X_a$ be the set of three-digit numbers containing a somewhere in its representation, where a is a string of digits. (For example, $X_{12}$ would include $12$, $121$, $312$, etc.) If Bob then picks a value of $a$ at random so $0 \le a \le 999$, the expected number of elements in $X_a$ can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find$ m + n$. [b]p25.[/b] Let $f(x) = x^5 + 2x^4 - 2x^3 + 4x^2 + 5x + 6$ and $g(x) = x^4 - x^3 + x^2 - x + 1$. If $a$, $b$, $c$, $d$ are the roots of $g(x)$, then find $f(a) + f(b) + f(c) + f(d)$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Princeton University Math Competition, A8

Tags: geometry
The incircle of acute triangle $ABC$ touches $BC, AC$, and $AB$ at points $D, E$, and $F$, respectively. Let $P$ be the second intersection of line $AD$ and the incircle. The line through $P$ tangent to the incircle intersects $AB$ and $AC$ at points $M$ and $N$, respectively. Given that $\overline{AB} = 8, \overline{AC} = 10$, and $\overline{AN} = 4$, let $\overline{AM} = \tfrac{a}{b}$ where $a$ and $b$ are positive coprime integers. What is $a + b$?

1999 ITAMO, 3

Let $r_1,r_2,r$, with $r_1 < r_2 < r$, be the radii of three circles $\Gamma_1,\Gamma_2,\Gamma$, respectively. The circles $\Gamma_1,\Gamma_2$ are internally tangent to $\Gamma$ at two distinct points $A,B$ and intersect in two distinct points. Prove that the segment $AB$ contains an intersection point of $\Gamma_1$ and $\Gamma_2$ if and only if $r_1 +r_2 = r$.

1998 Mediterranean Mathematics Olympiad, 3

Tags: geometry , incenter
In a triangle $ABC$, $I$ is the incenter and $D,E, F$ are the points of tangency of the incircle with $BC,CA,AB$, respectively. The bisector of angle $BIC$ meets $BC$ at $M$, and the line $AM$ intersects $EF$ at $P$. Prove that $DP$ bisects the angle $FDE$.

2015 Bundeswettbewerb Mathematik Germany, 1

Let $a,b$ be positive even integers. A rectangle with side lengths $a$ and $b$ is split into $a \cdot b$ unit squares. Anja and Bernd take turns and in each turn they color a square that is made of those unit squares. The person that can't color anymore, loses. Anja starts. Find all pairs $(a,b)$, such that she can win for sure. [b]Extension:[/b] Solve the problem for positive integers $a,b$ that don't necessarily have to be even. [b]Note:[/b] The [i]extension[/i] actually was proposed at first. But since this is a homework competition that goes over three months and some cases were weird, the problem was changed to even integers.