This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2023 Indonesia TST, G

Tags: geometry
Incircle of triangle $ABC$ tangent to $AB$ and $AC$ on $E$ and $F$ respectively. If $X$ is the midpoint of $EF$, prove $\angle BXC > 90^{\circ}$

2002 IMO, 6

Let $n\geq3$ be a positive integer. Let $C_1,C_2,C_3,\ldots,C_n$ be unit circles in the plane, with centres $O_1,O_2,O_3,\ldots,O_n$ respectively. If no line meets more than two of the circles, prove that \[ \sum\limits^{}_{1\leq i<j\leq n}{1\over O_iO_j}\leq{(n-1)\pi\over 4}. \]

2002 India IMO Training Camp, 18

Consider the square grid with $A=(0,0)$ and $C=(n,n)$ at its diagonal ends. Paths from $A$ to $C$ are composed of moves one unit to the right or one unit up. Let $C_n$ (n-th catalan number) be the number of paths from $A$ to $C$ which stay on or below the diagonal $AC$. Show that the number of paths from $A$ to $C$ which cross $AC$ from below at most twice is equal to $C_{n+2}-2C_{n+1}+C_n$

2019 Sharygin Geometry Olympiad, 10

Tags: geometry
Let $N$ be the midpoint of arc $ABC$ of the circumcircle of $\Delta ABC$, and $NP$, $NT$ be the tangents to the incircle of this triangle. The lines $BP$ and $BT$ meet the circumcircle for the second time at points $P_1$ and $T_1$ respectively. Prove that $PP_1 = TT_1$.

1963 IMO, 2

Point $A$ and segment $BC$ are given. Determine the locus of points in space which are vertices of right angles with one side passing through $A$, and the other side intersecting segment $BC$.

JOM 2025, 5

Tags: geometry
Let $ABC$ be a scalene triangle and $I$ be its incenter. Suppose the incircle $\omega$ touches $BC$ at a point $D$, and $N$ lies on $\omega$ such that $ND$ is a diameter of $\omega$. Let $X$ and $Y$ be points on lines $AC$ and $AB$ respectively such that $\angle BIX = \angle CIY = 90^\circ$. Let $V$ be the feet of perpendicular from $I$ onto line $XY$. Prove that the points $I$, $V$, $A$, $N$ are concyclic. [i](Proposed by Ivan Chan Guan Yu)[/i]

2022 Iran Team Selection Test, 4

Tags: geometry
Cyclic quadrilateral $ABCD$ with circumcenter $O$ is given. Point $P$ is the intersection of diagonals $AC$ and $BD$. Let $M$ and $N$ be the midpoint of the sides $AD$ and $BC$, respectively. Suppose that $\omega_1$, $\omega_2$ and $\omega_3$ be the circumcircle of triangles $ADP$, $BCP$ and $OMN$, respectively. The intersection point of $\omega_1$ and $\omega_3$, which is not on the arc $APD$ of $\omega_1$, is $E$ and the intersection point of $\omega_2$ and $\omega_3$, which is not on the arc $BPC$ of $\omega_2$, is $F$. Prove that $OF=OE$. Proposed by Seyed Amirparsa Hosseini Nayeri

1978 IMO Longlists, 6

Prove that for all $X > 1$, there exists a triangle whose sides have lengths $P_1(X) = X^4+X^3+2X^2+X+1, P_2(X) = 2X^3+X^2+2X+1$, and $P_3(X) = X^4-1$. Prove that all these triangles have the same greatest angle and calculate it.

2022 Bosnia and Herzegovina Junior BMO TST, 3

Let $ABC$ be an acute triangle. Tangents on the circumscribed circle of triangle $ABC$ at points $B$ and $C$ intersect at point $T$. Let $D$ and $E$ be a foot of the altitudes from $T$ onto $AB$ and $AC$ and let $M$ be the midpoint of $BC$. Prove: A) Prove that $M$ is the orthocenter of the triangle $ADE$. B) Prove that $TM$ cuts $DE$ in half.

1999 National Olympiad First Round, 1

Tags: geometry
Let $ ABC$ be a triangle with $ \left|AB\right| \equal{} 14$, $ \left|BC\right| \equal{} 12$, $ \left|AC\right| \equal{} 10$. Let $ D$ be a point on $ \left[AC\right]$ and $ E$ be a point on $ \left[BC\right]$ such that $ \left|AD\right| \equal{} 4$ and $ Area\left(ABC\right) \equal{} 2Area\left(CDE\right)$. Find $ Area\left(ABE\right)$. $\textbf{(A)}\ 4\sqrt {6} \qquad\textbf{(B)}\ 6\sqrt {2} \qquad\textbf{(C)}\ 3\sqrt {6} \qquad\textbf{(D)}\ 4\sqrt {2} \qquad\textbf{(E)}\ 4\sqrt {5}$

V Soros Olympiad 1998 - 99 (Russia), 9.10

The bisector of angle $\angle BAC$ of triangle $ABC$ intersects arc $BC$ (not containing point $A$) of the circle circumscribed around this triangle at point $P$. Segment $AP$ is divided by side $BC$ in ratio $k$ (counting from vertex $A$). Find the perimeter of triangle $ABC$ if $BC = a$.

1994 Hong Kong TST, 1

In a $\triangle ABC$, $\angle C=2 \angle B$. $P$ is a point in the interior of $\triangle ABC$ satisfying that $AP=AC$ and $PB=PC$. Show that $AP$ trisects the angle $\angle A$.

2015 VTRMC, Problem 7

Tags: geometry
Let $n$ be a positive integer and let $x_1,\ldots,x_n$ be $n$ nonzero points in $\mathbb R^2$. Suppose $\langle x_i,x_j\rangle$ (scalar or dot product) is a rational number for all $i,j$ ($1\le i,j\le n$). Let $S$ denote all points of $\mathbb R^2$ of the form $\sum_{i=1}^na_ix_i$ where the $a_i$ are integers. A closed disk of radius $R$ and center $P$ is the set of points at distance at most $R$ from $P$ (includes the points distance $R$ from $P$). Prove that there exists a positive number $R$ and closed disks $D_1,D_2,\ldots$ of radius $R$ such that (a) Each disk contains exactly two points of $S$; (b) Every point of $S$ lies in at least one disk; (c) Two distinct disks intersect in at most one point.

Ukrainian TYM Qualifying - geometry, II.16

Inside the circle are given three points that do not belong to one line. In one step it is allowed to replace one of the points with a symmetric one wrt the line containing the other two points. Is it always possible for a finite number of these steps to ensure that all three points are outside the circle?

1967 IMO Shortlist, 6

On the circle with center 0 and radius 1 the point $A_0$ is fixed and points $A_1, A_2, \ldots, A_{999}, A_{1000}$ are distributed in such a way that the angle $\angle A_00A_k = k$ (in radians). Cut the circle at points $A_0, A_1, \ldots, A_{1000}.$ How many arcs with different lengths are obtained. ?

2003 IMO Shortlist, 3

Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$. [i]Proposed by C.R. Pranesachar, India [/i]

2008 Oral Moscow Geometry Olympiad, 3

Given a quadrilateral $ABCD$. $A ', B', C'$ and $D'$ are the midpoints of the sides $BC, CB, BA$ and $AB$, respectively. It is known that $AA'= CC'$, $BB'= DD'$. Is it true that $ABCD$ is a parallelogram? (M. Volchkevich)

2006 Mediterranean Mathematics Olympiad, 2

Let $P$ be a point inside a triangle $ABC$, and $A_1B_2,B_1C_2,C_1A_2$ be segments passing through $P$ and parallel to $AB, BC, CA$ respectively, where points $A_1, A_2$ lie on $BC, B_1, B_2$ on $CA$, and $C_1,C_2$ on $AB$. Prove that \[ \text{Area}(A_1A_2B_1B_2C_1C_2) \ge \frac{1}{2}\text{Area}(ABC)\]

2022 Iran MO (3rd Round), 1

Triangle $ABC$ is assumed. The point $T$ is the second intersection of the symmedian of vertex $A$ with the circumcircle of the triangle $ABC$ and the point $D \neq A$ lies on the line $AC$ such that $BA=BD$. The line that at $D$ tangents to the circumcircle of the triangle $ADT$, intersects the circumcircle of the triangle $DCT$ for the second time at $K$. Prove that $\angle BKC = 90^{\circ}$(The symmedian of the vertex $A$, is the reflection of the median of the vertex $A$ through the angle bisector of this vertex).

2023/2024 Tournament of Towns, 5

Tags: geometry
Chord $D E$ of the circumcircle of the triangle $A B C$ intersects sides $A B$ and $B C$ in points $P$ and $Q$ respectively. Point $P$ lies between $D$ and $Q$. Angle bisectors $D F$ and $E G$ are drawn in triangles $A D P$ and $Q E C$. It turned out that the points $D$, $F, G, E$ are concyclic. Prove that the points $A, P, Q, C$ are concyclic. Azamat Mardanov

2014 Bosnia And Herzegovina - Regional Olympiad, 4

Determine the set $S$ with minimal number of points defining $7$ distinct lines

1995 Turkey Team Selection Test, 1

In a convex quadrilateral $ABCD$ it is given that $\angle{CAB} = 40^{\circ}, \angle{CAD} = 30^{\circ}, \angle{DBA} = 75^{\circ}$, and $\angle{DBC}=25^{\circ}$. Find $\angle{BDC}$.

2018 China Second Round Olympiad, 2

In triangle $\triangle ABC$, $AB<AC$, $M,D,E$ are the midpoints of $BC$, the arcs $BAC$ and $BC$ of the circumcircle of $\triangle ABC$ respectively. The incircle of $\triangle ABC$ touches $AB$ at $F$, $AE$ meets $BC$ at $G$, and the perpendicular to $AB$ at $B$ meets segment $EF$ at $N$. If $BN=EM$, prove that $DF$ is perpendicular to $FG$.

1978 Vietnam National Olympiad, 3

The triangle $ABC$ has angle $A = 30^o$ and $AB = \frac{3}{4} AC$. Find the point $P$ inside the triangle which minimizes $5 PA + 4 PB + 3 PC$.

2019 SIMO, Q3

Tags: geometry
In a scalene triangle $ABC$, the incircle touches $BC, AC$ and $AB$ at $D, E, F$ respectively. Let $K$ be the foot of the perpendicular from $A$ onto $BC$, and $M$ the midpoint of $BC$. Let $AD$ intersect the incircle again at $X$, and $BE$ at $Y$. Given that $E,F,K,M$ are concyclic, prove that $AX=XY=YD$.