Found problems: 25757
2011 IMO Shortlist, 8
Let $ABC$ be an acute triangle with circumcircle $\Gamma$. Let $\ell$ be a tangent line to $\Gamma$, and let $\ell_a, \ell_b$ and $\ell_c$ be the lines obtained by reflecting $\ell$ in the lines $BC$, $CA$ and $AB$, respectively. Show that the circumcircle of the triangle determined by the lines $\ell_a, \ell_b$ and $\ell_c$ is tangent to the circle $\Gamma$.
[i]Proposed by Japan[/i]
2007 Harvard-MIT Mathematics Tournament, 28
Compute the circumradius of cyclic hexagon $ABCDEF$, which has side lengths $AB=BC=2$, $CD=DE=9$, and $EF=FA=12$.
2022 JHMT HS, 1
The side lengths of an equiangular octagon alternate between $20$ and $22$. Find its area.
2007 All-Russian Olympiad Regional Round, 10.6
A point $ D$ is chosen on side $ BC$ of a triangle $ ABC$ such that the inradii of triangles $ ABD$ and $ ACD$ are equal. Consider in these triangles the excircles touching sides $ BD$ and $ CD$, respectively. Prove that their radii are also equal.
2018 Harvard-MIT Mathematics Tournament, 1
Square $CASH$ and regular pentagon $MONEY$ are both inscribed in a circle. Given that they do not share a vertex, how many intersections do these two polygons have?
2007 Sharygin Geometry Olympiad, 1
Determine on which side is the steering wheel disposed in the car depicted in the figure.
[img]https://4.bp.blogspot.com/-s2rjZw-d4UY/XMg5BXCE9SI/AAAAAAAAKHc/WOpvqjWw7lAciDEiNj_TX7io6sfItSPnQCK4BGAYYCw/s320/Sharygin%2Bfinal%2B2007%2B8.1.png[/img]
2023 Junior Balkan Team Selection Tests - Moldova, 2
Let $\Omega$ be the circumscribed circle of the acute triangle $ABC$ and $ D $ a point the small arc $BC$ of $\Omega$. Points $E$ and $ F $ are on the sides $ AB$ and $AC$, respectively, such that the quadrilateral $CDEF$ is a parallelogram. Point $G$ is on the small arc $AC$ such that lines $DC$ and $BG$ are parallel. Prove that the angles $GFC$ and $BAC$ are equal.
2013 Harvard-MIT Mathematics Tournament, 2
Let $ABCD$ be an isosceles trapezoid such that $AD = BC$, $AB = 3$, and $CD = 8$. Let $E$ be a point in the plane such that $BC = EC$ and $AE \perp EC$. Compute $AE$.
2011 Greece Junior Math Olympiad, 1
Let $ABC$ be a triangle with $\angle BAC=120^o$, which the median $AD$ is perpendicular to side $AB$ and intersects the circumscribed circle of triangle $ABC$ at point $E$. Lines $BA$ and $EC$ intersect at $Z$. Prove that
a) $ZD \perp BE$
b) $ZD=BC$
2023 China MO, 2
Let $\triangle ABC$ be an equilateral triangle of side length 1. Let $D,E,F$ be points on $BC,AC,AB$ respectively, such that $\frac{DE}{20} = \frac{EF}{22} = \frac{FD}{38}$. Let $X,Y,Z$ be on lines $BC,CA,AB$ respectively, such that $XY\perp DE, YZ\perp EF, ZX\perp FD$. Find all possible values of $\frac{1}{[DEF]} + \frac{1}{[XYZ]}$.
1993 Tournament Of Towns, (396) 4
A convex $1993$-gon is divided into convex $7$-gons. Prove that there are $3$ neighbouring sides of the $1993$-gon belonging to one such $7$-gon. (A vertex of a $7$-gon may not be positioned on the interior of a side of the $1993$-gon, and two $7$-gons either have no common points, exactly one common vertex or a complete common side.)
(A Kanel-Belov)
2012 Grigore Moisil Intercounty, 3
Let $ \Delta ABC$ be a triangle, with $ m(\angle A)=90^{\circ}$ and $ m(\angle B)=30^{\circ}.$
If $M$ is the middle of $[AB],$ $N$ is the middle of $[BC],$ and $P\in[BC],\ Q\in[MN],$ such that
\[\frac{PB}{PC}=4\cdot\frac{QM}{QN}+3,\]
prove that $ \Delta APQ$ is an equilateral triangle.
[b]Author: MARIN BANCOȘ[/b]
[b]Regional Mathematical Contest GRIGORE MOISIL, Romania, Baia Mare, 24.03.2012, 7th grade[/b]
2019 Caucasus Mathematical Olympiad, 7
On sides $BC$, $CA$, $AB$ of a triangle $ABC$ points $K$, $L$, $M$ are chosen, respectively, and a point $P$ is inside $ABC$ is chosen so that $PL\parallel BC$, $PM\parallel CA$, $PK\parallel AB$. Determine if it is possible that each of three trapezoids $AMPL$, $BKPM$, $CLPK$ has an inscribed circle.
2016 IMO Shortlist, G5
Let $D$ be the foot of perpendicular from $A$ to the Euler line (the line passing through the circumcentre and the orthocentre) of an acute scalene triangle $ABC$. A circle $\omega$ with centre $S$ passes through $A$ and $D$, and it intersects sides $AB$ and $AC$ at $X$ and $Y$ respectively. Let $P$ be the foot of altitude from $A$ to $BC$, and let $M$ be the midpoint of $BC$. Prove that the circumcentre of triangle $XSY$ is equidistant from $P$ and $M$.
2001 Canada National Olympiad, 3
Let $ABC$ be a triangle with $AC > AB$. Let $P$ be the intersection point of the perpendicular bisector of $BC$ and the internal angle bisector of $\angle{A}$. Construct points $X$ on $AB$ (extended) and $Y$ on $AC$ such that $PX$ is perpendicular to $AB$ and $PY$ is perpendicular to $AC$. Let $Z$ be the intersection point of $XY$ and $BC$.
Determine the value of $\frac{BZ}{ZC}$.
2018 Taiwan TST Round 2, 6
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.
2016 Peru MO (ONEM), 1
Let $ABCD$ be a trapezoid of parallel bases $ BC$ and $AD$. If $\angle CAD = 2\angle CAB, BC = CD$ and $AC = AD$, determine all the possible values of the measure of the angle $\angle CAB$.
2016 India IMO Training Camp, 1
Let $n$ be a natural number. We define sequences $\langle a_i\rangle$ and $\langle b_i\rangle$ of integers as follows. We let $a_0=1$ and $b_0=n$. For $i>0$, we let $$\left( a_i,b_i\right)=\begin{cases} \left(2a_{i-1}+1,b_{i-1}-a_{i-1}-1\right) & \text{if } a_{i-1}<b_{i-1},\\
\left( a_{i-1}-b_{i-1}-1,2b_{i-1}+1\right) & \text{if } a_{i-1}>b_{i-1},\\
\left(a_{i-1},b_{i-1}\right) & \text{if } a_{i-1}=b_{i-1}.\end{cases}$$
Given that $a_k=b_k$ for some natural number $k$, prove that $n+3$ is a power of two.
2022 Latvia Baltic Way TST, P10
Let $\triangle ABC$ be a triangle satisfying $AB<AC$. Let $D$ be a point on the segment $AC$ such that $AB=AD$. Let then $X$ be a point on the segment $BC$ satisfying $BD^2=BX\cdot BC$. Let the circumcircles of the triangles $\triangle XDC$ and $\triangle ABC$ intersect at $M \neq C$. Prove that the line $MD$ goes through the midpoint of the arc $\widehat{BAC}$ of the circumcircle of $\triangle ABC$.
May Olympiad L2 - geometry, 2001.2
On the trapezoid $ABCD$ , side $DA$ is perpendicular to the bases $AB$ and $CD$ . The base $AB$ measures $45$, the base $CD$ measures $20$ and the $BC$ side measures $65$. Let $P$ on the $BC$ side such that $BP$ measures $45$ and $M$ is the midpoint of $DA$. Calculate the measure of the $PM$ segment.
2005 Swedish Mathematical Competition, 3
In a triangle $ABC$ the bisectors of angles $A$ and $C$ meet the opposite sides at $D$ and $E$ respectively. Show that if the angle at $B$ is greater than $60^\circ$, then $AE +CD <AC$.
Kettering MO, 2014
[b]p1.[/b] Solve the equation $x^2 - x - cos y+1.25 =0$.
[b]p2.[/b] Solve the inequality: $\left| \frac{x - 2}{x - 3}\right| \le x$
[b]p3.[/b] Bilbo and Dwalin are seated at a round table of radius $R$. Bilbo places a coin of radius $r$ at the center of the table, then Dwalin places a second coin as near to the table’s center as possible without overlapping the first coin. The process continues with additional coins being placed as near as possible to the center of the table and in contact with as many coins as possible without overlap. The person who places the last coin entirely on the table (no overhang) wins the game.
Assume that $R/r$ is an integer.
(a) Who wins, Bilbo or Dawalin? Please justify your answer.
(b) How many coins are on the table when the game ends?
[b]p4.[/b] In the center of a square field is an orc. Four elf guards are on the vertices of that square. The orc can run in the field, the elves only along the sides of the square. Elves run $\$1.5$ times faster than the orc. The orc can kill one elf but cannot fight two of them at the same time. Prove that elves can keep the orc from escaping from the field.
[b]p5.[/b] Nine straight roads cross the Mirkwood which is shaped like a square, with an area of $120$ square miles. Each road intersects two opposite sides of the square and divides the Mirkwood into two quadrilaterals of areas $40$ and $80$ square miles. Prove that there exists a point in the Mirkwood which is an intersection of at least three roads.
PS. You should use hide for answers.
1994 National High School Mathematics League, 3
Circumcircle of $\triangle ABC$ is $\odot O$, incentre of $\triangle ABC$ is $I$. $\angle B=60^{\circ}.\angle A<\angle C$. Bisector of outer angle $\angle A$ intersects $\odot O$ at $E$. Prove:
[b](a)[/b] $IO=AE$.
[b](b)[/b] The radius of $\odot O$ is $R$, then $2R<IO+IA+IC<(1+\sqrt3)R$.
2022 Assara - South Russian Girl's MO, 3
For what $n$ can the vertices of a regular $n$-gon be connected in a $n$-link closed polyline so that such a polyline does not have three equal links?
2010 Paraguay Mathematical Olympiad, 5
In a triangle $ABC$, let $D$, $E$ and $F$ be the feet of the altitudes from $A$, $B$ and $C$ respectively. Let $D'$, $E'$ and $F'$ be the second intersection of lines $AD$, $BE$ and $CF$ with the circumcircle of $ABC$. Show that the triangles $DEF$ and $D'E'F'$ are similar.