This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2020 JBMO Shortlist, 1

Let $\triangle ABC$ be an acute triangle. The line through $A$ perpendicular to $BC$ intersects $BC$ at $D$. Let $E$ be the midpoint of $AD$ and $\omega$ the the circle with center $E$ and radius equal to $AE$. The line $BE$ intersects $\omega$ at a point $X$ such that $X$ and $B$ are not on the same side of $AD$ and the line $CE$ intersects $\omega$ at a point $Y$ such that $C$ and $Y$ are not on the same side of $AD$. If both of the intersection points of the circumcircles of $\triangle BDX$ and $\triangle CDY$ lie on the line $AD$, prove that $AB = AC$.

2016 JBMO Shortlist, 5

Tags: geometry
Let $ABC$ be an acute angled triangle with orthocenter ${H}$ and circumcenter ${O}$. Assume the circumcenter ${X}$ of ${BHC}$ lies on the circumcircle of ${ABC}$. Reflect $O$ across ${X}$ to obtain ${O'}$, and let the lines ${XH}$and ${O'A}$ meet at ${K}$. Let $L,M$ and $N$ be the midpoints of $\left[ XB \right],\left[ XC \right]$ and $\left[ BC \right]$, respectively. Prove that the points $K,L,M$ and ${N}$ are concyclic.

2014 Switzerland - Final Round, 1

The points $A, B, C$ and $D$ lie in this order on the circle $k$. Let $t$ be the tangent at $k$ through $C$ and $s$ the reflection of $AB$ at $AC$. Let $G$ be the intersection of the straight line $AC$ and $BD$ and $H$ the intersection of the straight lines $s$ and $CD$. Show that $GH$ is parallel to $t$.

2001 All-Russian Olympiad Regional Round, 10.1

The lengths of the sides of the polygon are $a_1$, $a_2$,. $..$ ,$a_n$. The square trinomial $f(x)$ is such that $f(a_1) = f(a_2 +...+ a_n)$. Prove that if $A$ is the sum of the lengths of several sides of a polygon, $B$ is the sum of the lengths of its remaining sides, then $f(A) = f(B)$.

2018 Serbia JBMO TST, 1

Tags: geometry
Let $AD$ be an internal angle bisector in triangle $\Delta ABC$. An arbitrary point $M$ is chosen on the closed segment $AD$. A parallel to $BC$ through $M$ cuts $AB$ at $N$. Let $AD, CM$ cut circumcircle of $\Delta ABC$ at $K, L$, respectively. Prove that $K,N,L$ are collinear.

2014 BmMT, Team Round

[b]p1.[/b] Roll two dice. What is the probability that the sum of the rolls is prime? [b]p2. [/b]Compute the sum of the first $20$ squares. [b]p3.[/b] How many integers between $0$ and $999$ are not divisible by $7, 11$, or $13$? [b]p4.[/b] Compute the number of ways to make $50$ cents using only pennies, nickels, dimes, and quarters. [b]p5.[/b] A rectangular prism has side lengths $1, 1$, and $2$. What is the product of the lengths of all of the diagonals? [b]p6.[/b] What is the last digit of $7^{6^{5^{4^{3^{2^1}}}}}$ ? [b]p7.[/b] Given square $ABCD$ with side length $3$, we construct two regular hexagons on sides $AB$ and $CD$ such that the hexagons contain the square. What is the area of the intersection of the two hexagons? [img]https://cdn.artofproblemsolving.com/attachments/f/c/b2b010cdd0a270bc10c6e3bb3f450ba20a03e7.png[/img] [b]p8.[/b] Brooke is driving a car at a steady speed. When she passes a stopped police officer, she begins decelerating at a rate of $10$ miles per hour per minute until she reaches the speed limit of $25$ miles per hour. However, when Brooke passed the police officer, he immediately began accelerating at a rate of $20$ miles per hour per minute until he reaches the rate of $40$ miles per hour. If the police officer catches up to Brooke after 3 minutes, how fast was Brooke driving initially? [b]p9.[/b] Find the ordered pair of positive integers $(x, y)$ such that $144x - 89y = 1$ and $x$ is minimal. [b]p10.[/b] How many zeroes does the product of the positive factors of $10000$ (including $1$ and $10000$) have? [b]p11.[/b] There is a square configuration of desks. It is known that one can rearrange these desks such that it has $7$ fewer rows but $10$ more columns, with $13$ desks remaining. How many desks are there in the square configuration? [b]p12.[/b] Given that there are $168$ primes with $3$ digits or less, how many numbers between $1$ and $1000$ inclusive have a prime number of factors? [b]p13.[/b] In the diagram below, we can place the integers from $1$ to $19$ exactly once such that the sum of the entries in each row, in any direction and of any size, is the same. This is called the magic sum. It is known that such a configuration exists. Compute the magic sum. [img]https://cdn.artofproblemsolving.com/attachments/3/4/7efaa5ba5ad250e24e5ad7ef03addbf76bcfb4.png[/img] [b]p14.[/b] Let $E$ be a random point inside rectangle $ABCD$ with side lengths $AB = 2$ and $BC = 1$. What is the probability that angles $ABE$ and $CDE$ are both obtuse? [b]p15.[/b] Draw all of the diagonals of a regular $13$-gon. Given that no three diagonals meet at points other than the vertices of the $13$-gon, how many intersection points lie strictly inside the $13$-gon? [b]p16.[/b] A box of pencils costs the same as $11$ erasers and $7$ pencils. A box of erasers costs the same as $6$ erasers and a pencil. A box of empty boxes and an eraser costs the same as a pencil. Given that boxes cost a penny and each of the boxes contain an equal number of objects, how much does it costs to buy a box of pencils and a box of erasers combined? [b]p17.[/b] In the following figure, all angles are right angles and all sides have length $1$. Determine the area of the region in the same plane that is at most a distance of $1/2$ away from the perimeter of the figure. [img]https://cdn.artofproblemsolving.com/attachments/6/2/f53ae3b802618703f04f41546e3990a7d0640e.png[/img] [b]p18.[/b] Given that $468751 = 5^8 + 5^7 + 1$ is a product of two primes, find both of them. [b]p19.[/b] Your wardrobe contains two red socks, two green socks, two blue socks, and two yellow socks. It is currently dark right now, but you decide to pair up the socks randomly. What is the probability that none of the pairs are of the same color? [b]p20.[/b] Consider a cylinder with height $20$ and radius $14$. Inside the cylinder, we construct two right cones also with height $20$ and radius $14$, such that the two cones share the two bases of the cylinder respectively. What is the volume ratio of the intersection of the two cones and the union of the two cones? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 South African National Olympiad, 3

Tags: geometry
The inscribed circle of triangle $ABC$, with centre $I$, touches sides $BC$, $CA$ and $AB$ at $D$, $E$ and $F$, respectively. Let $P$ be a point, on the same side of $FE$ as $A$, for which $\angle PFE = \angle BCA$ and $\angle PEF = \angle ABC$. Prove that $P$, $I$ and $D$ lie on a straight line.

2016 Belarus Team Selection Test, 2

Tags: geometry
A point $A_1$ is marked inside an acute non-isosceles triangle $ABC$ such that $\angle A_1AB = \angle A_1BC$ and $\angle A_1AC=\angle A_1CB$. Points $B_1$ and $C_1$ are defined same way. Let $G$ be the gravity center if the triangle $ABC$. Prove that the points $A_1,B_1,C_1,G$ are concyclic.

1991 Arnold's Trivium, 77

Find the eigenvalues and their multiplicities of the Laplace operator $\Delta = \text{div grad}$ on a sphere of radius $R$ in Euclidean space of dimension $n$.

2014 BMT Spring, 6

Tags: geometry
Square $ABCD$ has side length $5$ and arc $BD$ with center $A$. $E$ is the midpoint of $AB$ and $CE$ intersects arc $BD$ at $F$. $G$ is placed onto $BC$ such that $FG$ is perpendicular to $BC$. What is the length of $FG$?

2018 Dutch IMO TST, 4

In a non-isosceles triangle $ABC$ the centre of the incircle is denoted by $I$. The other intersection point of the angle bisector of $\angle BAC$ and the circumcircle of $\vartriangle ABC$ is $D$. The line through $I$ perpendicular to $AD$ intersects $BC$ in $F$. The midpoint of the circle arc $BC$ on which $A$ lies, is denoted by $M$. The other intersection point of the line $MI$ and the circle through $B, I$ and $C$, is denoted by $N$. Prove that $FN$ is tangent to the circle through $B, I$ and $C$.

Kvant 2019, M2554

Tags: geometry
Two externally tangent circles $\Omega_1$ and $\Omega_2$ are internally tangent to the circle $\Omega$ at $A$ and $B$, respectively. If the line $AB$ intersects $\Omega_1$ again at $D$ and $C\in\Omega_1\cap\Omega_2$, show that $\angle BCD=90^\circ$. [i]Proposed by V. Rastorguev[/i]

1964 Polish MO Finals, 3

Given a tetrahedron $ ABCD $ whose edges $ AB, BC, CD, DA $ are tangent to a certain sphere. Prove that the points of tangency lie in the same plane.

2010 Baltic Way, 13

In an acute triangle $ABC$, the segment $CD$ is an altitude and $H$ is the orthocentre. Given that the circumcentre of the triangle lies on the line containing the bisector of the angle $DHB$, determine all possible values of $\angle CAB$.

2020 Korea Junior Math Olympiad, 2

Let $ABC$ be an acute triangle with circumcircle $\Omega$ and $\overline{AB} < \overline{AC}$. The angle bisector of $A$ meets $\Omega$ again at $D$, and the line through $D$, perpendicular to $BC$ meets $\Omega$ again at $E$. The circle centered at $A$, passing through $E$ meets the line $DE$ again at $F$. Let $K$ be the circumcircle of triangle $ADF$. Prove that $AK$ is perpendicular to $BC$.

2015 Finnish National High School Mathematics Comp, 2

The lateral edges of a right square pyramid are of length $a$. Let $ABCD$ be the base of the pyramid, $E$ its top vertex and $F$ the midpoint of $CE$. Assuming that $BDF$ is an equilateral triangle, compute the volume of the pyramid.

2005 QEDMO 1st, 4 (Z1)

Solve the equation $x^3+2y^3+5z^3=0$ in integers.

Denmark (Mohr) - geometry, 2008.4

In triangle $ABC$ we have $AB = 2, AC = 6$ and $\angle A = 120^o$ . The bisector of angle $A$ intersects the side BC at the point $D$. Determine the length of $AD$. The answer must be given as a fraction with integer numerator and denominator.

2011 Princeton University Math Competition, A5 / B7

Tags: geometry
Let $\ell_1$ and $\ell_2$ be two parallel lines, a distance of 15 apart. Points $A$ and $B$ lie on $\ell_1$ while points $C$ and $D$ lie on $\ell_2$ such that $\angle BAC = 30^\circ$ and $\angle ABD = 60^\circ$. The minimum value of $AD + BC$ is $a\sqrt b$, where $a$ and $b$ are integers and $b$ is squarefree. Find $a + b$.

2009 Today's Calculation Of Integral, 517

Consider points $ P$ which are inside the square with side length $ a$ such that the distance from $ P$ to the center of the square equals to the least distance from $ P$ to each side of the square.Find the area of the figure formed by the whole points $ P$.

2019 Belarus Team Selection Test, 7.1

Tags: geometry
The internal bisectors of angles $\angle DAB$ and $\angle BCD$ of a quadrilateral $ABCD$ intersect at the point $X_1$, and the external bisectors of these angles intersect at the point $X_2$. The internal bisectors of angles $\angle ABC$ and $\angle CDA$ intersect at the point $Y_1$, and the external bisectors of these angles intersect at the point $Y_2$. Prove that the angle between the lines $X_1X_2$ and $Y_1Y_2$ equals the angle between the diagonals $AC$ and $BD$. [i](A. Voidelevich)[/i]

1992 AIME Problems, 13

Triangle $ABC$ has $AB=9$ and $BC: AC=40: 41$. What's the largest area that this triangle can have?

1985 Tournament Of Towns, (105) 5

(a) The point $O$ lies inside the convex polygon $A_1A_2A_3...A_n$ . Consider all the angles $A_iOA_j$ where $i, j$ are distinct natural numbers from $1$ to $n$ . Prove that at least $n- 1$ of these angles are not acute . (b) Same problem for a convex polyhedron with $n$ vertices. (V. Boltyanskiy, Moscow)

1988 India National Olympiad, 9

Show that for a triangle with radii of circumcircle and incircle equal to $ R$, $ r$ respectively, the inequality $ R \geq 2r$ holds.

1969 IMO, 4

$C$ is a point on the semicircle diameter $AB$, between $A$ and $B$. $D$ is the foot of the perpendicular from $C$ to $AB$. The circle $K_1$ is the incircle of $ABC$, the circle $K_2$ touches $CD,DA$ and the semicircle, the circle $K_3$ touches $CD,DB$ and the semicircle. Prove that $K_1,K_2$ and $K_3$ have another common tangent apart from $AB$.