This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2008 IMAC Arhimede, 4

Let $ABCD$ be a random tetrahedron. Let $E$ and $F$ be the midpoints of segments $AB$ and $CD$, respectively. If the angle $a$ is between $AD$ and $BC$, determine $cos a$ in terms of $EF, AD$ and $BC$.

2011 India National Olympiad, 1

Let $D,E,F$ be points on the sides $BC,CA,AB$ respectively of a triangle $ABC$ such that $BD=CE=AF$ and $\angle BDF=\angle CED=\angle AFE.$ Show that $\triangle ABC$ is equilateral.

2024 Chile Junior Math Olympiad, 1

A plastic ball with a radius of 45 mm has a circular hole made in it. The hole is made to fit a ball with a radius of 35 mm, in such a way that the distance between their centers is 60 mm. Calculate the radius of the hole.

2019 Saudi Arabia Pre-TST + Training Tests, 2.3

Let $ABC$ be an acute, non isosceles triangle with $O,H$ are circumcenter and orthocenter, respectively. Prove that the nine-point circles of $AHO,BHO,CHO$ has two common points.

2013 All-Russian Olympiad, 2

Acute-angled triangle $ABC$ is inscribed into circle $\Omega$. Lines tangent to $\Omega$ at $B$ and $C$ intersect at $P$. Points $D$ and $E$ are on $AB$ and $AC$ such that $PD$ and $PE$ are perpendicular to $AB$ and $AC$ respectively. Prove that the orthocentre of triangle $ADE$ is the midpoint of $BC$.

1982 Kurschak Competition, 1

A cube of integral dimensions is given in space so that all four vertices of one of the faces are lattice points. Prove that the other four vertices are also lattice points.

EMCC Speed Rounds, 2011

[i]20 problems for 20 minutes.[/i] [b]p1.[/b] Euclid eats $\frac17$ of a pie in $7$ seconds. Euler eats $\frac15$ of an identical pie in $10$ seconds. Who eats faster? [b]p2.[/b] Given that $\pi = 3.1415926...$ , compute the circumference of a circle of radius 1. Express your answer as a decimal rounded to the nearest hundred thousandth (i.e. $1.234562$ and $1.234567$ would be rounded to $1.23456$ and $1.23457$, respectively). [b]p3.[/b] Alice bikes to Wonderland, which is $6$ miles from her house. Her bicycle has two wheels, and she also keeps a spare tire with her. If each of the three tires must be used for the same number of miles, for how many miles will each tire be used? [b]p4.[/b] Simplify $\frac{2010 \cdot 2010}{2011}$ to a mixed number. (For example, $2\frac12$ is a mixed number while $\frac52$ and $2.5$ are not.) [b]p5.[/b] There are currently $175$ problems submitted for $EMC^2$. Chris has submitted $51$ of them. If nobody else submits any more problems, how many more problems must Chris submit so that he has submitted $\frac13$ of the problems? [b]p6.[/b] As shown in the diagram below, points $D$ and $L$ are located on segment $AK$, with $D$ between $A$ and $L$, such that $\frac{AD}{DK}=\frac{1}{3}$ and $\frac{DL}{LK}=\frac{5}{9}$. What is $\frac{DL}{AK}$? [img]https://cdn.artofproblemsolving.com/attachments/9/a/3f92bd33ffbe52a735158f7ebca79c4c360d30.png[/img] [b]p7.[/b] Find the number of possible ways to order the letters $G, G, e, e, e$ such that two neighboring letters are never $G$ and $e$ in that order. [b]p8.[/b] Find the number of odd composite integers between $0$ and $50$. [b]p9.[/b] Bob tries to remember his $2$-digit extension number. He knows that the number is divisible by $5$ and that the first digit is odd. How many possibilities are there for this number? [b]p10.[/b] Al walks $1$ mile due north, then $2$ miles due east, then $3$ miles due south, and then $4$ miles due west. How far, in miles, is he from his starting position? (Assume that the Earth is flat.) [b]p11.[/b] When n is a positive integer, $n!$ denotes the product of the first $n$ positive integers; that is, $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$. Given that $7! = 5040$, compute $8! + 9! + 10!$. [b]p12.[/b] Sam's phone company charges him a per-minute charge as well as a connection fee (which is the same for every call) every time he makes a phone call. If Sam was charged $\$4.88$ for an $11$-minute call and $\$6.00$ for a $19$-minute call, how much would he be charged for a $15$-minute call? [b]p13.[/b] For a positive integer $n$, let $s_n$ be the sum of the n smallest primes. Find the least $n$ such that $s_n$ is a perfect square (the square of an integer). [b]p14.[/b] Find the remainder when $2011^{2011}$ is divided by $7$. [b]p15.[/b] Let $a, b, c$, and $d$ be $4$ positive integers, each of which is less than $10$, and let $e$ be their least common multiple. Find the maximum possible value of $e$. [b]p16.[/b] Evaluate $100 - 1 + 99 - 2 + 98 - 3 + ... + 52 - 49 + 51 - 50$. [b]p17.[/b] There are $30$ basketball teams in the Phillips Exeter Dorm Basketball League. In how ways can $4$ teams be chosen for a tournament if the two teams Soule Internationals and Abbot United cannot be chosen at the same time? [b]p18.[/b] The numbers $1, 2, 3, 4, 5, 6$ are randomly written around a circle. What is the probability that there are four neighboring numbers such that the sum of the middle two numbers is less than the sum of the other two? [b]p19.[/b] What is the largest positive $2$-digit factor of $3^{2^{2011}} - 2^{2^{2011}}$? [b]p20.[/b] Rhombus $ABCD$ has vertices $A = (-12,-4)$, $B = (6, b)$, $C = (c,-4)$ and $D = (d,-28)$, where $b$, $c$, and $d$ are integers. Find a constant $m$ such that the line y = $mx$ divides the rhombus into two regions of equal area. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 Princeton University Math Competition, A6

Find the coordinates of the point in the plane at which the sum of the distances from it to the three points $(0, 0)$, $(2, 0)$, $(0, \sqrt{3})$ is minimal.

2020 ABMC, Speed

[i]25 problems for 30 minutes[/i] [b]p1.[/b] Today is Saturday, April $25$, $2020$. What is the value of $6 + 4 + 25 + 2020$? [b]p2.[/b] The figure below consists of a $2$ by $3$ grid of squares. How many squares of any size are in the grid? $\begin{tabular}{|l|l|l|} \hline & & \\ \hline & & \\ \hline \end{tabular}$ [b]p3.[/b] James is playing a game. He first rolls a six-sided dice which contains a different number on each side, then randomly picks one of twelve di erent colors, and finally ips a quarter. How many different possible combinations of a number, a color and a flip are there in this game? [b]p4.[/b] What is the sum of the number of diagonals and sides in a regular hexagon? [b]p5.[/b] Mickey Mouse and Minnie Mouse are best friends but they often fight. Each of their fights take up exactly one hour, and they always fight on prime days. For example, they fight on January $2$nd, $3$rd, but not the $4$th. Knowing this, how many total times do Mickey and Minnie fight in the months of April, May and June? [b]p6.[/b] Apple always loved eating watermelons. Normal watermelons have around $13$ black seeds and $25$ brown seeds, whereas strange watermelons had $45$ black seeds and $2$ brown seeds. If Apple bought $14$ normal watermelons and $7$ strange watermelons, then let $a$ be the total number of black seeds and $b$ be the total number of brown seeds. What is $a - b$? [b]p7.[/b] Jerry and Justin both roll a die once. The probability that Jerry's roll is greater than Justin's can be expressed as a fraction in the form $\frac{m}{n}$ in simplified terms. What is $m + n$? [b]p8.[/b] Taylor wants to color the sides of an octagon. What is the minimum number of colors Taylor will need so that no adjacent sides of the octagon will be filled in with the same color? [b]p9.[/b] The point $\frac23$ of the way from ($-6, 8$) to ($-3, 5$) can be expressed as an ordered pair $(a, b)$. What is $|a - b|$? [b]p10.[/b] Mary Price Maddox laughs $7$ times per class. If she teaches $4$ classes a day for the $5$ weekdays every week but doesn't laugh on Wednesdays, then how many times does she laugh after $5$ weeks of teaching? [b]p11.[/b] Let $ABCD$ be a unit square. If $E$ is the midpoint of $AB$ and $F$ lies inside $ABCD$ such that $CFD$ is an equilateral triangle, the positive difference between the area of $CED$ and $CFD$ can be expressed in the form $\frac{a-\sqrt{b}}{c}$ , where $a$, $b$, $c$ are in lowest simplified terms. What is $a + b + c$? [b]p12.[/b] Eddie has musician's syndrome. Whenever a song is a $C$, $A$, or $F$ minor, he begins to cry and his body becomes very stiff. On the other hand, if the song is in $G$ minor, $A$ at major, or $E$ at major, his eyes open wide and he feels like the happiest human being ever alive. There are a total of $24$ keys. How many different possibilities are there in which he cries while playing one song with two distinct keys? [b]p13.[/b] What positive integer must be added to both the numerator and denominator of $\frac{12}{40}$ to make a fraction that is equivalent to $\frac{4}{11}$ ? [b]p14.[/b] The number $0$ is written on the board. Each minute, Gene the genie either multiplies the number on the board by $3$ or $9$, each with equal probability, and then adds either $1$,$2$, or $3$, each with equal probability. Find the expected value of the number after $3$ minutes. [b]p15.[/b] $x$ satisfies $\dfrac{1}{x+ \dfrac{1}{1+\frac{1}{2}}}=\dfrac{1}{2+ \dfrac{1}{1- \dfrac{1}{2+\frac{1}{2}}}}$ Find $x$. [b]p16.[/b] How many different points in a coordinate plane can a bug end up on if the bug starts at the origin and moves one unit to the right, left, up or down every minute for $8$ minutes? [b]p17.[/b] The triplets Addie, Allie, and Annie, are racing against the triplets Bobby, Billy, and Bonnie in a relay race on a track that is $100$ feet long. The first person of each team must run around the entire track twice and tag the second person for the second person to start running. Then, the second person must run once around the entire track and tag the third person, and finally, the third person would only have to run around half the track. Addie and Bob run first, Allie and Billy second, Annie and Bonnie third. Addie, Allie, and Annie run at $50$ feet per minute (ft/m), $25$ ft/m, and $20$ ft/m, respectively. If Bob, Billy, and Bonnie run half as fast as Addie, Allie, and Annie, respectively, then how many minutes will it take Bob, Billy, and Bonnie to finish the race. Assume that everyone runs at a constant rate. [b]p18.[/b] James likes to play with Jane and Jason. If the probability that Jason and Jane play together is $\frac13$, while the probability that James and Jason is $\frac14$ and the probability that James and Jane play together is $\frac15$, then the probability that they all play together is $\frac{\sqrt{p}}{q}$ for positive integers $p$, $q$ where $p$ is not divisible by the square of any prime. Find $p + q$. [b]p19.[/b] Call an integer a near-prime if it is one more than a prime number. Find the sum of all near-primes less than$ 1000$ that are perfect powers. (Note: a perfect power is an integer of the form $n^k$ where $n, k \ge 2$ are integers.) [b]p20.[/b] What is the integer solution to $\sqrt{\frac{2x-6}{x-11}} = \frac{3x-7}{x+6}$ ? [b]p21.[/b] Consider rectangle $ABCD$ with $AB = 12$ and $BC = 4$ with $F$,$G$ trisecting $DC$ so that $F$ is closer to $D$. Then $E$ is on $AB$. We call the intersection of $EF$ and $DB$ $X$, and the intersection of $EG$ and $DB$ is $Y$. If the area of $\vartriangle XY E$ is \frac{8}{15} , then what is the length of $EB$? [b]p22.[/b] The sum $$\sum^{\infty}_{n=2} \frac{1}{4n^2-1}$$ can be expressed as a common fraction $\frac{a}{b}$ in lowest terms. Find $a + b$. [b]p23.[/b] In square $ABCD$, $M$, $N$, $O$, $P$ are points on sides $\overline{AB}$, $\overline{BC}$, $\overline{CD}$ and $\overline{DA}$, respectively. If $AB = 4$, $AM = BM$ and $DP = 3AP$, the least possible value of $MN + NO + OP$ can be expressed as $\sqrt{x}$ forsome integer x. Find x: [b]p24.[/b] Grand-Ovich the ant is at a vertex of a regular hexagon and he moves to one of the adjacent vertices every minute with equal probability. Let the probability that after $8$ minutes he will have returned to the starting vertex at least once be the common fraction $\frac{a}{b}$ in lowest terms. What is $a + b$? [b]p25.[/b] Find the last two non-zero digits at the end of $2020!$ written as a two digit number. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2009 District Olympiad, 2

Hiven an acute triangle $ABC$, consider the midpoints $M$ and $N$ of the sides $AB$ and $AC$, respectively. If point $S$ is variable on side $BC$, prove that $$(MB - MS)(NC - NS) \le 0$$

2003 Romania Team Selection Test, 14

Tags: rhombus , geometry
Given is a rhombus $ABCD$ of side 1. On the sides $BC$ and $CD$ we are given the points $M$ and $N$ respectively, such that $MC+CN+MN=2$ and $2\angle MAN = \angle BAD$. Find the measures of the angles of the rhombus. [i]Cristinel Mortici[/i]

2008 Stanford Mathematics Tournament, 10

Six people play the following game: They have a cube, initially white. One by one, the players mark an $ X$ on a white face of the cube, and roll it like a die. The winner is the first person to roll an $ X$ (for example, player 1 wins with probability $ \frac {1}{6}$, while if none of players 1-5 win, player 6 will place an $ X$ on the last square and win for sure). What is the probability that the sixth player wins?

2009 Italy TST, 2

Two circles $O_1$ and $O_2$ intersect at $M,N$. The common tangent line nearer to $M$ of the two circles touches $O_1,O_2$ at $A,B$ respectively. Let $C,D$ be the symmetric points of $A,B$ with respect to $M$ respectively. The circumcircle of triangle $DCM$ intersects circles $O_1$ and $O_2$ at points $E,F$ respectively which are distinct from $M$. Prove that the circumradii of the triangles $MEF$ and $NEF$ are equal.

2017 Saudi Arabia BMO TST, 4

Let $ABC$ be a triangle with $A$ is an obtuse angle. Denote $BE$ as the internal angle bisector of triangle $ABC$ with $E \in AC$ and suppose that $\angle AEB = 45^o$. The altitude $AD$ of triangle $ABC$ intersects $BE$ at $F$. Let $O_1, O_2$ be the circumcenter of triangles $FED, EDC$. Suppose that $EO_1, EO_2$ meet $BC$ at $G, H$ respectively. Prove that $\frac{GH}{GB}= \tan \frac{a}{2}$

2024 Brazil National Olympiad, 4

Tags: tangent , geometry
Let \( ABC \) be an acute-angled scalene triangle. Let \( D \) be a point on the interior of segment \( BC \), different from the foot of the altitude from \( A \). The tangents from \( A \) and \( B \) to the circumcircle of triangle \( ABD \) meet at \( O_1 \), and the tangents from \( A \) and \( C \) to the circumcircle of triangle \( ACD \) meet at \( O_2 \). Show that the circle centered at \( O_1 \) passing through \( A \), the circle centered at \( O_2 \) passing through \( A \), and the line \( BC \) have a common point.

2020 Stars of Mathematics, 2

Tags: geometry
Let $ABC$ be a triangle, let $I$ be its incentre and let $D$ be the orthogonal projection of $I$ on $BC.$ The circle $\odot(ABC)$ crosses the line $AI$ again at $M,$ and the line $DM$ again at $N.$ Prove that the lines $AN$ and $IN$ are perpendicular. [i]Freddie Illingworth & Dominic Yeo[/i]

2014 Contests, 2

The $100$ vertices of a prism, whose base is a $50$-gon, are labeled with numbers $1, 2, 3, \ldots, 100$ in any order. Prove that there are two vertices, which are connected by an edge of the prism, with labels differing by not more than $48$. Note: In all the triangles the three vertices do not lie on a straight line.

1988 Greece Junior Math Olympiad, 2

Tags: symmetry , geometry
Draw the smaller number of line segments connecting points of the figure such that the new figure obtained to have exactly: [img]https://cdn.artofproblemsolving.com/attachments/d/1/098e03714904573a1eacd2d3dc28b4e8c42c7c.png[/img] i) one axis of symmetry ii) two axes of symmetry iii) four axes of symmetry Draw a new figure, at each case.

2014 Contests, 2

Let $ABC$ be a isosceles triangle with $ AC = BC > AB$. Let $ E, F $ be the midpoints of segments $ AC, AB$, and let $l$ be the perpendicular bisector of $AC$. Let $ l $ meets $ AB$ at $K$, the line through $B$ parallel to $KC$ meets $AC$ at point $L$, and line $FL$ meets $ l$ at $W$. Let $ P $ be a point on segment $BF$. Let $H$ be the orthocenter of triangle $ACP$ and line $BH$ and $CP$ meet at point $J$. Line $FJ$ meets $l$ at $M$. Prove that $ AW = PW $ if and only if $B$ lies on the circumcircle of $EFM$.

MathLinks Contest 1st, 2

Tags: geometry
Consider the circles $\omega$, $\omega_1$, $\omega_2$, where $\omega_1$, $\omega_2$ pass through the center $O$ of $\omega$. The circle $\omega$ cuts $\omega_1$ at $A, E$ and $\omega_2$ at $C, D$. The circles $\omega_1$ and $\omega_2$ intersect at $O$ and $M$. If A$D$ cuts $CE$ at $B$ and if $MN \perp BO$, ($N \in BO$) prove that $2MN^2 \le BM \cdot MO$.

Gheorghe Țițeica 2024, P2

Tags: geometry
$ABCD$ is a tetrahedron such that $BA\perp AC$, $DB\perp (ABC)$ and $AC\neq BD$. Denote by $O$ the midpoint of $AB$ and $K$ the foot of the perpendicular from $O$ to $DC$. Prove that $$\frac{V_{KOAC}}{V_{KOBD}}=\frac{AC}{BD}$$ if and only if $2AC\cdot BD=AB^2$. [i]Vietnam Olympiad[/i]

2022 Iran Team Selection Test, 8

In triangle $ABC$, with $AB<AC$, $I$ is the incenter, $E$ is the intersection of $A$-excircle and $BC$. Point $F$ lies on the external angle bisector of $BAC$ such that $E$ and $F$ lieas on the same side of the line $AI$ and $\angle AIF=\angle AEB$. Point $Q$ lies on $BC$ such that $\angle AIQ=90$. Circle $\omega_b$ is tangent to $FQ$ and $AB$ at $B$, circle $\omega_c$ is tangent to $FQ$ and $AC$ at $C$ and both circles pass through the inside of triangle $ABC$. if $M$ is the Midpoint od the arc $BC$, which does not contain $A$, prove that $M$ lies on the radical axis of $\omega_b$ and $\omega_c$. Proposed by Amirmahdi Mohseni

2002 Turkey Team Selection Test, 2

In a triangle $ABC$, the angle bisector of $\widehat{ABC}$ meets $[AC]$ at $D$, and the angle bisector of $\widehat{BCA}$ meets $[AB]$ at $E$. Let $X$ be the intersection of the lines $BD$ and $CE$ where $|BX|=\sqrt 3|XD|$ ve $|XE|=(\sqrt 3 - 1)|XC|$. Find the angles of triangle $ABC$.

2017 Middle European Mathematical Olympiad, 6

Tags: geometry
Let $ABC$ be an acute-angled triangle with $AB \neq AC$, circumcentre $O$ and circumcircle $\Gamma$. Let the tangents to $\Gamma$ at $B$ and $C$ meet each other at $D$, and let the line $AO$ intersect $BC$ at $E$. Denote the midpoint of $BC$ by $M$ and let $AM$ meet $\Gamma$ again at $N \neq A$. Finally, let $F \neq A$ be a point on $\Gamma$ such that $A, M, E$ and $F$ are concyclic. Prove that $FN$ bisects the segment $MD$.

1971 All Soviet Union Mathematical Olympiad, 147

Given an unit square and some circles inside. Radius of each circle is less than $0.001$, and there is no couple of points belonging to the different circles with the distance between them $0.001$ exactly. Prove that the area, covered by the circles is not greater than $0.34$.