Found problems: 25757
2003 IMAR Test, 3
The exinscribed circle of a triangle $ABC$ corresponding to its vertex $A$ touches the sidelines $AB$ and $AC$ in the points $M$ and $P$, respectively, and touches its side $BC$ in the point $N$. Show that if the midpoint of the segment $MP$ lies on the circumcircle of triangle $ABC$, then the points $O$, $N$, $I$ are collinear, where $I$ is the incenter and $O$ is the circumcenter of triangle $ABC$.
2020 Bangladesh Mathematical Olympiad National, Problem 10
Let $ABCD$ be a convex quadrilateral. $O$ is the intersection of $AC$ and $BD$. $AO=3$ ,$BO=4$, $CO=5$, $DO=6$. $X$ and $Y$ are points in segment $AB$ and $CD$ respectively, such that $X,O,Y$ are collinear. The minimum of $\frac{XB}{XA}+\frac{YC}{YD}$ can be written as $\frac{a\sqrt{c}}{b}$ , where $\frac{a}{b}$ is in lowest term and $c$ is not divisible by any square number greater then $1$. What is the value of $10a+b+c$?
1961 Leningrad Math Olympiad, grade 7
[b]7.1. / 6.5[/b] Prove that out of any six people there will always be three pairs of acquaintances or three pairs of strangers.
[b]7.2[/b] Given a circle $O$ and a square $K$, as well as a line $L$. Construct a segment of given length parallel to $L$ and such that its ends lie on $O$ and $K$ respectively
[b]7.3[/b] The three-digit number $\overline{abc}$ is divisible by $37$. Prove that the sum of the numbers $\overline{bca}$ and $\overline{cab}$ is also divisible by $37$.[b] (typo corrected)[/b]
[b]7.4.[/b] Point $C$ is the midpoint of segment $AB$. On an arbitrary ray drawn from point $C$ and not lying on line $AB$, three consecutive points $P$, $M$ and $Q$ so that $PM=MQ$. Prove that $AP+BQ>2CM$.
[img]https://cdn.artofproblemsolving.com/attachments/f/3/a8031007f5afc31a8b5cef98dd025474ac0351.png[/img]
[b]7.5.[/b] Given $2n+1$ different objects. Prove that you can choose an odd number of objects from them in as many ways as an even number.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c3983442_1961_leningrad_math_olympiad]here[/url].
1964 IMO, 2
Suppose $a,b,c$ are the sides of a triangle. Prove that \[ a^2(b+c-a)+b^2(a+c-b)+c^2(a+b-c) \leq 3abc \]
1962 Polish MO Finals, 3
What condition should the angles of triangle $ ABC $ satisfy so that the bisector of angle $ A $, the median drawn from vertex $ B $ and the altitude drawn from vertex $ C $ intersect at one point?
1984 IMO Shortlist, 9
Let $a, b, c$ be positive numbers with $\sqrt a +\sqrt b +\sqrt c = \frac{\sqrt 3}{2}$. Prove that the system of equations
\[\sqrt{y-a}+\sqrt{z-a}=1,\] \[\sqrt{z-b}+\sqrt{x-b}=1,\] \[\sqrt{x-c}+\sqrt{y-c}=1\]
has exactly one solution $(x, y, z)$ in real numbers.
1972 USAMO, 5
A given convex pentagon $ ABCDE$ has the property that the area of each of five triangles $ ABC, BCD, CDE, DEA$, and $ EAB$ is unity [i](equal to 1)[/i]. Show that all pentagons with the above property have the same area, and calculate that area. Show, furthermore, that there are infinitely many non-congruent pentagons having the above area property.
2004 239 Open Mathematical Olympiad, 2
Do there exist such a triangle $T$, that for any coloring of a plane in two colors one may found a triangle $T'$, equal to $T$, such that all vertices of $T'$ have the same color.
[b]
proposed by S. Berlov[/b]
2018 Federal Competition For Advanced Students, P2, 4
Let $ABC$ be a triangle and $P$ a point inside the triangle such that the centers $M_B$ and $M_A$ of the circumcircles $k_B$ and $k_A$ of triangles $ACP$ and $BCP$, respectively, lie outside the triangle $ABC$. In addition, we assume that the three points $A, P$ and $M_A$ are collinear as well as the three points $B, P$ and $M_B$. The line through $P$ parallel to side $AB$ intersects circles $k_A$ and $k_B$ in points $D$ and $E$, respectively, where $D, E \ne P$. Show that $DE = AC + BC$.
[i](Proposed by Walther Janous)[/i]
2016 Croatia Team Selection Test, Problem 3
Let $P$ be a point inside a triangle $ABC$ such that
$$ \frac{AP + BP}{AB} = \frac{BP + CP}{BC} = \frac{CP + AP}{CA} .$$
Lines $AP$, $BP$, $CP$ intersect the circumcircle of triangle $ABC$ again in $A'$, $B'$, $C'$. Prove that the triangles $ABC$ and $A'B'C'$ have a common incircle.
2020/2021 Tournament of Towns, P5
Let $O{}$ be the circumcenter of an acute triangle $ABC$. Let $M{}$ be the midpoint of $AC$. The straight line $BO$ intersects the altitudes $AA_1{}$ and $CC_1{}$ at the points $H_a$ and $H_c$ respectively. The circumcircles of the triangles $BH_aA$ and $BH_cC$ have a second point of intersection $K{}$. Prove that $K{}$ lies on the straight line $BM$.
[i]Mikhail Evdokimov[/i]
2023 HMNT, 1
Let $ABC$ be an equilateral triangle with side length $2$ that is inscribed in a circle $\omega$. A chord of $\omega$ passes through the midpoints of sides $AB$ and $AC$. Compute the length of this chord.
2016 Saint Petersburg Mathematical Olympiad, 5
Points $A$ and $P$ are marked in the plane not lying on the line $\ell$. For all right triangles $ABC$ with hypotenuse on $\ell$, show that the circumcircle of triangle $BPC$ passes through a fixed point other than $P$.
2023 Malaysian IMO Team Selection Test, 5
Let $ABCD$ be a cyclic quadrilateral, with circumcircle $\omega$ and circumcenter $O$. Let $AB$ intersect $CD$ at $E$, $AD$ intersect $BC$ at $F$, and $AC$ intersect $BD$ at $G$.
The points $A_1, B_1, C_1, D_1$ are chosen on rays $GA$, $GB$, $GC$, $GD$ such that:
$\bullet$ $\displaystyle \frac{GA_1}{GA} = \frac{GB_1}{GB} = \frac{GC_1}{GC} = \frac{GD_1}{GD}$
$\bullet$ The points $A_1, B_1, C_1, D_1, O$ lie on a circle.
Let $A_1B_1$ intersect $C_1D_1$ at $K$, and $A_1D_1$ intersect $B_1C_1$ at $L$. Prove that the image of the circle $(A_1B_1C_1D_1)$ under inversion about $\omega$ is a line passing through the midpoints of $KE$ and $LF$.
[i]Proposed by Anzo Teh Zhao Yang & Ivan Chan Kai Chin[/i]
2015 Romania National Olympiad, 4
Consider $\vartriangle ABC$ where $\angle ABC= 60 ^o$. Points $M$ and $D$ are on the sides $(AC)$, respectively $(AB)$, such that $\angle BCA = 2 \angle MBC$, and $BD = MC$. Determine $\angle DMB$.
2002 All-Russian Olympiad, 3
Let O be the circumcenter of a triangle ABC. Points M and N are choosen on the sides AB and BC respectively so that the angle AOC is two times greater than angle MON. Prove that the perimeter of triangle MBN is not less than the lenght of side AC
LMT Guts Rounds, 2019 S
[u]Round 5[/u]
[b]p13.[/b] Two concentric circles have radii $1$ and $3$. Compute the length of the longest straight line segment that can be drawn froma point on the circle of radius $1$ to a point on the circle of radius $3$ if the segment cannot intersect the circle of radius $1$.
[b]p14.[/b] Find the value of $\frac{1}{3} + \frac29+\frac{3}{27}+\frac{4}{81}+\frac{5}{243}+...$
[b]p15.[/b] Bob is trying to type the word "welp". However, he has a $18$ chance ofmistyping each letter and instead typing one of four adjacent keys, each with equal probability. Find the probability that he types "qelp" instead of "welp".
[u]Round 6[/u]
[b]p16.[/b] How many ways are there to tile a $2\times 12$ board using an unlimited supply of $1\times 1$ and $1\times 3$ pieces?
[b]p17.[/b] Jeffrey and Yiming independently choose a number between $0$ and $1$ uniformly at random. What is the probability that their two numbers can formthe sidelengths of a triangle with longest side of length $1$?
[b]p18.[/b] On $\vartriangle ABC$ with $AB = 12$ and $AC = 16$, let $M$ be the midpoint of $BC$ and $E$,$F$ be the points such that $E$ is on $AB$, $F$ is on $AC$, and $AE = 2AF$. Let $G$ be the intersection of $EF$ and $AM$. Compute $\frac{EG}{GF}$ .
[u]Round 7[/u]
[b]p19.[/b] Find the remainder when $2019x^{2019} -2018x^{2018}+ 2017x^{2017}-...+x$ is divided by $x +1$.
[b]p20.[/b] Parallelogram $ABCD$ has $AB = 5$, $BC = 3$, and $\angle ABC = 45^o$. A line through C intersects $AB$ at $M$ and $AD$ at $N$ such that $\vartriangle BCM$ is isosceles. Determine the maximum possible area of $\vartriangle MAN$.
[b]p21[/b]. Determine the number of convex hexagons whose sides only lie along the grid shown below.
[img]https://cdn.artofproblemsolving.com/attachments/2/9/93cf897a321dfda282a14e8f1c78d32fafb58d.png[/img]
[u]Round 8[/u]
[b]p22.[/b] Let $\vartriangle ABC$ be a triangle with side lengths $AB = 4$, $BC = 5$, and $C A = 6$. Extend ray $\overrightarrow{AB}$ to a point $D$ such that $AD = 12$, and similarly extend ray $\overrightarrow{CB}$ to point $E$ such that $CE = 15$. Let $M$ and $N$ be points on the circumcircles of $ABC$ and $DBE$, respectively, such that line $MN$ is tangent to both circles. Determine the length of $MN$.
[b]p23.[/b] A volcano will erupt with probability $\frac{1}{20-n}$ if it has not erupted in the last $n$ years. Determine the expected number of years between consecutive eruptions.
[b]p24.[/b] If $x$ and $y$ are integers such that $x+ y = 9$ and $3x^2+4x y = 128$, find $x$.
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3165997p28809441]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166099p28810427]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2017 Caucasus Mathematical Olympiad, 7
$8$ ants are placed on the edges of the unit cube. Prove that there exists a pair of ants at a distance not exceeding $1$.
2022 District Olympiad, P4
We call a set of $6$ points in the plane [i]splittable[/i] if we if can denote its elements by $A,B,C,D,E$ and $F$ in such a way that $\triangle ABC$ and $\triangle DEF$ have the same centroid.
[list=a]
[*]Construct a splittable set.
[*]Show that any set of $7$ points has a subset of $6$ points which is [i]not[/i] splittable.
[/list]
2012 Miklós Schweitzer, 4
Let $K$ be a convex shape in the $n$ dimensional space, having unit volume. Let $S \subset K$ be a Lebesgue measurable set with measure at least $1-\varepsilon$, where $0<\varepsilon<1/3$. Prove that dilating $K$ from its centroid by the ratio of $2\varepsilon \ln(1/\varepsilon)$, the shape obtained contains the centroid of $S$.
2010 IMO Shortlist, 3
Let $A_1A_2 \ldots A_n$ be a convex polygon. Point $P$ inside this polygon is chosen so that its projections $P_1, \ldots , P_n$ onto lines $A_1A_2, \ldots , A_nA_1$ respectively lie on the sides of the polygon. Prove that for arbitrary points $X_1, \ldots , X_n$ on sides $A_1A_2, \ldots , A_nA_1$ respectively,
\[\max \left\{ \frac{X_1X_2}{P_1P_2}, \ldots, \frac{X_nX_1}{P_nP_1} \right\} \geq 1.\]
[i]Proposed by Nairi Sedrakyan, Armenia[/i]
2011 AIME Problems, 12
Nine delegates, three each from three different countries, randomly select chairs at a round table that seats nine people. Let the probability that each delegate sits next to at least one delegate from another country be $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
Russian TST 2014, P1
The inscribed circle of the triangle $ABC{}$ touches the sides $BC,CA$ and $AB{}$ at $A',B'$ and $C'{}$ respectively. Let $I_a$ be the $A$-excenter of $ABC{}.$ Prove that $I_aA'$ is perpendicular to the line determined by the circumcenters of $I_aBC'$ and $I_aCB'.$
1994 AMC 12/AHSME, 11
Three cubes of volume $1, 8$ and $27$ are glued together at their faces. The smallest possible surface area of the resulting configuration is
$ \textbf{(A)}\ 36 \qquad\textbf{(B)}\ 56 \qquad\textbf{(C)}\ 70 \qquad\textbf{(D)}\ 72 \qquad\textbf{(E)}\ 74 $
2019 Switzerland Team Selection Test, 5
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.