This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

DMM Team Rounds, 2006

[b]p1.[/b] What is the smallest positive integer $x$ such that $\frac{1}{x} <\sqrt{12011} - \sqrt{12006}$? [b]p2. [/b] Two soccer players run a drill on a $100$ foot by $300$ foot rectangular soccer eld. The two players start on two different corners of the rectangle separated by $100$ feet, then run parallel along the long edges of the eld, passing a soccer ball back and forth between them. Assume that the ball travels at a constant speed of $50$ feet per second, both players run at a constant speed of $30$ feet per second, and the players lead each other perfectly and pass the ball as soon as they receive it, how far has the ball travelled by the time it reaches the other end of the eld? [b]p3.[/b] A trapezoid $ABCD$ has $AB$ and $CD$ both perpendicular to $AD$ and $BC =AB + AD$. If $AB = 26$, what is $\frac{CD^2}{AD+CD}$ ? [b]p4.[/b] A hydrophobic, hungry, and lazy mouse is at $(0, 0)$, a piece of cheese at $(26, 26)$, and a circular lake of radius $5\sqrt2$ is centered at $(13, 13)$. What is the length of the shortest path that the mouse can take to reach the cheese that also does not also pass through the lake? [b]p5.[/b] Let $a, b$, and $c$ be real numbers such that $a + b + c = 0$ and $a^2 + b^2 + c^2 = 3$. If $a^5 + b^5 + c^5\ne 0$, compute $\frac{(a^3+b^3+c^3)(a^4+b^4+c^4)}{a^5+b^5+c^5}$. [b]p6. [/b] Let $S$ be the number of points with integer coordinates that lie on the line segment with endpoints $\left( 2^{2^2}, 4^{4^4}\right)$ and $\left(4^{4^4}, 0\right)$. Compute $\log_2 (S - 1)$. [b]p7.[/b] For a positive integer $n$ let $f(n)$ be the sum of the digits of $n$. Calculate $$f(f(f(2^{2006})))$$ [b]p8.[/b] If $a_1, a_2, a_3, a_4$ are roots of $x^4 - 2006x^3 + 11x + 11 = 0$, find $|a^3_1 + a^3_2 + a^3_3 + a^3_4|$. [b]p9.[/b] A triangle $ABC$ has $M$ and $N$ on sides $BC$ and $AC$, respectively, such that $AM$ and $BN$ intersect at $P$ and the areas of triangles $ANP$, $APB$, and $PMB$ are $5$, $10$, and $8$ respectively. If $R$ and $S$ are the midpoints of $MC$ and $NC$, respectively, compute the area of triangle $CRS$. [b]p10.[/b] Jack's calculator has a strange button labelled ''PS.'' If Jack's calculator is displaying the positive integer $n$, pressing PS will cause the calculator to divide $n$ by the largest power of $2$ that evenly divides $n$, and then adding 1 to the result and displaying that number. If Jack randomly chooses an integer $k$ between $ 1$ and $1023$, inclusive, and enters it on his calculator, then presses the PS button twice, what is the probability that the number that is displayed is a power of $2$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1957 AMC 12/AHSME, 26

From a point within a triangle, line segments are drawn to the vertices. A necessary and sufficient condition that the three triangles thus formed have equal areas is that the point be: $ \textbf{(A)}\ \text{the center of the inscribed circle} \qquad \\ \textbf{(B)}\ \text{the center of the circumscribed circle}\qquad \\ \textbf{(C)}\ \text{such that the three angles fromed at the point each be }{120^\circ}\qquad \\ \textbf{(D)}\ \text{the intersection of the altitudes of the triangle}\qquad \\ \textbf{(E)}\ \text{the intersection of the medians of the triangle}$

Kvant 2020, M2615

Tags: geometry
In the triangle $ABC$, the inscribed circle touches the sides $CA{}$ and $AB{}$ at the points $B_1{}$ and $C_1{}$, respectively. An arbitrary point $D{}$ is selected on the side $AB{}$. The point $L{}$ is the center of the inscribed circle of the triangle $BCD$. The bisector of the angle $ACD$ intersects the line $B_1C_1$ at the point $M{}$. Prove that $\angle CML=90^\circ$. [i]Proposed by Chan Quang Heung (Vietnam)[/i]

1981 IMO Shortlist, 18

Several equal spherical planets are given in outer space. On the surface of each planet there is a set of points that is invisible from any of the remaining planets. Prove that the sum of the areas of all these sets is equal to the area of the surface of one planet.

2024/2025 TOURNAMENT OF TOWNS, P6

Tags: geometry
An equilateral triangle is dissected into white and black triangles. It is known that all white triangles are right-angled and mutually congruent, and all black triangles are isosceles and also mutually congruent. Is it necessarily true that a) all angles of white triangles are multiples of $30^{\circ}$; (4 marks) b) all angles of black triangles are multiples of $30^{\circ}$ ? (5 marks)

1996 USAMO, 3

Let $ABC$ be a triangle. Prove that there is a line $\ell$ (in the plane of triangle $ABC$) such that the intersection of the interior of triangle $ABC$ and the interior of its reflection $A'B'C'$ in $\ell$ has area more than $\frac23$ the area of triangle $ABC$.

2021 HMNT, 3

Tags: geometry
Let $n$ be the answer to this problem. Hexagon $ABCDEF$ is inscribed in a circle of radius $90$. The area of $ABCDEF$ is $8n$, $AB = BC = DE = EF$, and $CD = FA$. Find the area of triangle $ABC$:

2001 Junior Balkan Team Selection Tests - Romania, 4

Determine a right parallelepiped with minimal area, if its volume is strictly greater than $1000$, and the lengths of it sides are integer numbers.

2015 Puerto Rico Team Selection Test, 2

In the triangle $ABC$, let $P$, $Q$, and $R$ lie on the sides $BC$, $AC$, and $AB$ respectively, such that $AQ = AR$, $BP = BR$ and $CP = CQ$. Let $\angle PQR=75^o$ and $\angle PRQ=35^o$. Calculate the measures of the angles of the triangle $ABC$.

2020 AMC 12/AHSME, 24

Tags: triangle , geometry
Suppose that $\triangle ABC$ is an equilateral triangle of side length $s$, with the property that there is a unique point $P$ inside the triangle such that $AP = 1$, $BP = \sqrt{3}$, and $CP = 2$. What is $s?$ $\textbf{(A) } 1 + \sqrt{2} \qquad \textbf{(B) } \sqrt{7} \qquad \textbf{(C) } \frac{8}{3} \qquad \textbf{(D) } \sqrt{5 + \sqrt{5}} \qquad \textbf{(E) } 2\sqrt{2}$

2014 ELMO Shortlist, 11

Let $ABC$ be a triangle with circumcenter $O$. Let $P$ be a point inside $ABC$, so let the points $D, E, F$ be on $BC, AC, AB$ respectively so that the Miquel point of $DEF$ with respect to $ABC$ is $P$. Let the reflections of $D, E, F$ over the midpoints of the sides that they lie on be $R, S, T$. Let the Miquel point of $RST$ with respect to the triangle $ABC$ be $Q$. Show that $OP = OQ$. [i]Proposed by Yang Liu[/i]

1999 Spain Mathematical Olympiad, 1

The lines $t$ and $ t'$, tangent to the parabola $y = x^2$ at points $A$ and $B$ respectively, intersect at point $C$. The median of triangle $ABC$ from $C$ has length $m$. Find the area of $\triangle ABC$ in terms of $m$.

1987 IMO Longlists, 70

In an acute-angled triangle $ABC$ the interior bisector of angle $A$ meets $BC$ at $L$ and meets the circumcircle of $ABC$ again at $N$. From $L$ perpendiculars are drawn to $AB$ and $AC$, with feet $K$ and $M$ respectively. Prove that the quadrilateral $AKNM$ and the triangle $ABC$ have equal areas.[i](IMO Problem 2)[/i] [i]Proposed by Soviet Union.[/i]

2001 National Olympiad First Round, 18

A convex polygon has at least one side with length $1$. If all diagonals of the polygon have integer lengths, at most how many sides does the polygon have? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 7 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ \text{None of the preceding} $

1962 Putnam, A1

Tags: convex , point , geometry
Consider $5$ points in the plane, such that there are no $3$ of them collinear. Prove that there is a convex quadrilateral with vertices at $4$ points.

1979 Miklós Schweitzer, 4

For what values of $ n$ does the group $ \textsl{SO}(n)$ of all orthogonal transformations of determinant $ 1$ of the $ n$-dimensional Euclidean space possess a closed regular subgroup?($ \textsl{G}<\textsl{SO}(n)$ is called $ \textit{regular}$ if for any elements $ x,y$ of the unit sphere there exists a unique $ \varphi \in \textsl{G}$ such that $ \varphi(x)\equal{}y$.) [i]Z. Szabo[/i]

2000 Mexico National Olympiad, 1

Circles $A,B,C,D$ are given on the plane such that circles $A$ and $B$ are externally tangent at $P, B$ and $C$ at $Q, C$ and $D$ at $R$, and $D$ and $A$ at $S$. Circles $A$ and $C$ do not meet, and so do not $B$ and $D$. (a) Prove that the points $P,Q,R,S$ lie on a circle. (b) Suppose that $A$ and $C$ have radius $2, B$ and $D$ have radius $3$, and the distance between the centers of $A$ and $C$ is $6$. Compute the area of the quadrilateral $PQRS$.

2021 Science ON grade VII, 2

Tags: angle , geometry
In triangle $ABC$, we have $\angle ABC=\angle ACB=44^o$. Point $M$ is in its interior such that $\angle MBC=16^o$ and $\angle MCB=30^o$. Prove that $\angle MAC=\angle MBC$. [i] (Andra Elena Mircea)[/i]

2017 Taiwan TST Round 2, 2

Let $ABC$ be a triangle such that $BC>AB$, $L$ be the internal angle bisector of $\angle ABC$. Let $P,Q$ be the feet from $A,C$ to $L$, respectively. Suppose $M,N$ are the midpoints of $\overline{AC}$ and $\overline{BC}$, respectively. Let $O$ be the circumcenter of triangle $PQM$, and the circumcircle intersects $AC$ at point $H$. Prove that $O,M,N,H$ are concyclic.

1986 IMO Longlists, 23

Let $I$ and $J$ be the centers of the incircle and the excircle in the angle $BAC$ of the triangle $ABC$. For any point $M$ in the plane of the triangle, not on the line $BC$, denote by $I_M$ and $J_M$ the centers of the incircle and the excircle (touching $BC$) of the triangle $BCM$. Find the locus of points $M$ for which $II_MJJ_M$ is a rectangle.

EMCC Guts Rounds, 2018

[u]Round 5[/u] [b]p13.[/b] Find all ordered pairs of real numbers $(x, y)$ satisfying the following equations: $$\begin{cases} \dfrac{1}{xy} + \dfrac{y}{x}= 2 \\ \dfrac{1}{xy^2} + \dfrac{y^2}{x} = 7 \end{cases}$$ [b]p14.[/b] An egg plant is a hollow prism of negligible thickness, with height $2$ and an equilateral triangle base. Inside the egg plant, there is enough space for four spherical eggs of radius $1$. What is the minimum possible volume of the egg plant? [b]p15.[/b] How many ways are there for Farmer James to color each square of a $2\times 6$ grid with one of the three colors eggshell, cream, and cornsilk, so that no two adjacent squares are the same color? [u]Round 6[/u] [b]p16.[/b] In a triangle $ABC$, $\angle A = 45^o$, and let $D$ be the foot of the perpendicular from $A$ to segment $BC$. $BD = 2$ and $DC = 4$. Let $E$ be the intersection of the line $AD$ and the perpendicular line from $B$ to line $AC$. Find the length of $AE$. [b]p17.[/b] Find the largest positive integer $n$ such that there exists a unique positive integer $m$ satisfying $$\frac{1}{10} \le \frac{m}{n} \le \frac19$$ [b]p18.[/b] How many ordered pairs $(A,B)$ of positive integers are there such that $A+B = 10000$ and the number $A^2 + AB + B$ has all distinct digits in base $10$? [u]Round 7[/u] [b]p19.[/b] Pentagon $JAMES$ satisfies $JA = AM = ME = ES = 2$. Find the maximum possible area of $JAMES$. [b]p20.[/b] $P(x)$ is a monic polynomial (a polynomial with leading coecient $1$) of degree $4$, such that $P(2^n+1) =8^n + 1$ when $n = 1, 2, 3, 4$. Find the value of $P(1)$. [b]p21[/b]. PEAcock and Zombie Hen Hao are at the starting point of a circular track, and start running in the same direction at the same time. PEAcock runs at a constant speed that is $2018$ times faster than Zombie Hen Hao's constant speed. At some point in time, Farmer James takes a photograph of his two favorite chickens, and he notes that they are at different points along the track. Later on, Farmer James takes a second photograph, and to his amazement, PEAcock and Zombie Hen Hao have now swapped locations from the first photograph! How many distinct possibilities are there for PEAcock and Zombie Hen Hao's positions in Farmer James's first photograph? (Assume PEAcock and Zombie Hen Hao have negligible size.) [u]Round 8[/u] [b]p22.[/b] How many ways are there to scramble the letters in $EGGSEATER$ such that no two consecutive letters are the same? [b]p23.[/b] Let $JAMES$ be a regular pentagon. Let $X$ be on segment $JA$ such that $\frac{JX}{XA} = \frac{XA}{JA}$ . There exists a unique point $P$ on segment $AE$ such that $XM = XP$. Find the ratio $\frac{AE}{PE}$ . [b]p24.[/b] Find the minimum value of the function $$f(x) = \left|x - \frac{1}{x} \right|+ \left|x - \frac{2}{x} \right| + \left|x - \frac{3}{x} \right|+... + \left|x - \frac{9}{x} \right|+ \left|x - \frac{10}{x} \right|$$ over all nonzero real numbers $x$. PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2949191p26406082]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 AMC 10, 7

Tags: geometry , ratio
An equilateral triangle of side length $ 10$ is completely filled in by non-overlapping equilateral triangles of side length $ 1$. How many small triangles are required? $ \textbf{(A)}\ 10 \qquad \textbf{(B)}\ 25 \qquad \textbf{(C)}\ 100 \qquad \textbf{(D)}\ 250 \qquad \textbf{(E)}\ 1000$

2013 Vietnam National Olympiad, 2

Let $ABC$ be a cute triangle.$(O)$ is circumcircle of $\triangle ABC$.$D$ is on arc $BC$ not containing $A$.Line $\triangle$ moved through $H$($H$ is orthocenter of $\triangle ABC$ cuts circumcircle of $\triangle ABH$,circumcircle $\triangle ACH$ again at $M,N$ respectively. a.Find $\triangle$ satisfy $S_{AMN}$ max b.$d_{1},d_{2}$ are the line through $M$ perpendicular to $DB$,the line through $N$ perpendicular to $DC$ respectively. $d_{1}$ cuts $d_{2}$ at $P$.Prove that $P$ move on a fixed circle.

2015 Iran Team Selection Test, 4

Tags: geometry
Ali puts $5$ points on the plane such that no three of them are collinear. Ramtin adds a sixth point that is not collinear with any two of the former points.Ali wants to eventually construct two triangles from the six points such that one can be placed inside another. Can Ali put the 5 points in such a manner so that he would always be able to construct the desired triangles? (We say that triangle $T_1$ can be placed inside triangle $T_2$ if $T_1$ is congruent to a triangle that is located completely inside $T_2$.)

2002 All-Russian Olympiad, 2

A quadrilateral $ABCD$ is inscribed in a circle $\omega$. The tangent to $\omega$ at $A$ intersects the ray $CB$ at $K$, and the tangent to $\omega$ at $B$ intersects the ray $DA$ at $M$. Prove that if $AM=AD$ and $BK=BC$, then $ABCD$ is a trapezoid.