This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2014 NIMO Problems, 8

Aaron takes a square sheet of paper, with one corner labeled $A$. Point $P$ is chosen at random inside of the square and Aaron folds the paper so that points $A$ and $P$ coincide. He cuts the sheet along the crease and discards the piece containing $A$. Let $p$ be the probability that the remaining piece is a pentagon. Find the integer nearest to $100p$. [i]Proposed by Aaron Lin[/i]

VI Soros Olympiad 1999 - 2000 (Russia), 11.10

Tags: geometry , angle
In triangle $ABC$, angle $A$ is equal to $a$ and angle $B$ is equal to $2a$. A circle with center at point $C$ of radius $CA$ intersects the line containing the bisector of the exterior angle at vertex $B$, at points $M$ and $N$. Find the angles of triangle $MAN$.

1976 AMC 12/AHSME, 24

[asy] size(150); pair A=(0,0),B=(1,0),C=(0,1),D=(-1,0),E=(0,.5),F=(sqrt(2)/2,.25); draw(circle(A,1)^^D--B); draw(circle(E,.5)^^circle( F ,.25)); label("$A$", D, W); label("$K$", A, S); label("$B$", B, dir(0)); label("$L$", E, N); label("$M$",shift(-.05,.05)*F); //Credit to Klaus-Anton for the diagram[/asy] In the adjoining figure, circle $\mathit{K}$ has diameter $\mathit{AB}$; cirlce $\mathit{L}$ is tangent to circle $\mathit{K}$ and to $\mathit{AB}$ at the center of circle $\mathit{K}$; and circle $\mathit{M}$ tangent to circle $\mathit{K}$, to circle $\mathit{L}$ and $\mathit{AB}$. The ratio of the area of circle $\mathit{K}$ to the area of circle $\mathit{M}$ is $\textbf{(A) }12\qquad\textbf{(B) }14\qquad\textbf{(C) }16\qquad\textbf{(D) }18\qquad \textbf{(E) }\text{not an integer}$

2021 European Mathematical Cup, 2

Tags: geometry
Let $ABC$ be a triangle and let $D, E$ and $F$ be the midpoints of sides $BC, CA$ and $AB$, respectively. Let $X\ne A$ be the intersection of $AD$ with the circumcircle of $ABC$. Let $\Omega$ be the circle through $D$ and $X$, tangent to the circumcircle of $ABC$. Let $Y$ and $Z$ be the intersections of the tangent to $\Omega$ at $D$ with the perpendicular bisectors of segments $DE$ and $DF$, respectively. Let $P$ be the intersection of $YE$ and $ZF$ and let $G$ be the centroid of $ABC$. Show that the tangents at $B$ and $C$ to the circumcircle of $ABC$ and the line $PG$ are concurrent.

Durer Math Competition CD Finals - geometry, 2008.C3

We divided a regular octagon into parallelograms. Prove that there are at least $2$ rectangles between the parallelograms.

2017 Baltic Way, 15

Tags: polygon , angle , geometry
Let $n \ge 3$ be an integer. What is the largest possible number of interior angles greater than $180^\circ$ in an $n$-gon in the plane, given that the $n$-gon does not intersect itself and all its sides have the same length?

2007 Nordic, 2

Three given rectangles cover the sides of a triangle completely and each rectangle has a side parallel to a given line. Show that the rectangles also cover the interior of the triangle.

2002 Austrian-Polish Competition, 1

Tags: geometry , ratio
Given a circle $G$ with center $O$ and radius $r$. Let $AB$ be a fixed diameter of $G$. Let $K$ be a fixed point of segment $AO$. Denote by $t$ the line tangent to at $A$. For any chord $CD$ (other than $AB$) passing through $K$. Let $P$ and $Q$ be the points of intersection of lines $BC$ and $BD$ with $t$. Prove that the product $AP\cdot AQ$ remains costant as the chord $CD$ varies.

2006 China Team Selection Test, 2

Let $\omega$ be the circumcircle of $\triangle{ABC}$. $P$ is an interior point of $\triangle{ABC}$. $A_{1}, B_{1}, C_{1}$ are the intersections of $AP, BP, CP$ respectively and $A_{2}, B_{2}, C_{2}$ are the symmetrical points of $A_{1}, B_{1}, C_{1}$ with respect to the midpoints of side $BC, CA, AB$. Show that the circumcircle of $\triangle{A_{2}B_{2}C_{2}}$ passes through the orthocentre of $\triangle{ABC}$.

1976 Yugoslav Team Selection Test, Problem 1

Prove that for a given convex polygon of area $A$ and perimeter $P$ there exists a circle of radius $\frac AP$ that is contained in the interior of the polygon.

1976 Polish MO Finals, 4

The diagonals of some quadrilateral with sides $a,b,c,d$ are perpendicular. Prove that the diagonals of any other quadrilateral with sides $a,b,c,d $ also are perpendicular

2016 Sharygin Geometry Olympiad, P4

In quadrilateral $ABCD$, $\angle B = \angle D = 90$ and $AC = BC + DC$. Point $P$ of ray $BD$ is such that $BP = AD$. Prove that line $CP$ is parallel to the bisector of angle $ABD$. [i](Proposed by A.Trigub)[/i]

2024 ELMO Problems, 5

In triangle $ABC$ with $AB<AC$ and $AB+AC=2BC$, let $M$ be the midpoint of $\overline{BC}$. Choose point $P$ on the extension of $\overline{BA}$ past $A$ and point $Q$ on segment $\overline{AC}$ such that $M$ lies on $\overline{PQ}$. Let $X$ be on the opposite side of $\overline{AB}$ from $C$ such that $\overline{AX} \parallel \overline{BC}$ and $AX=AP=AQ$. Let $\overline{BX}$ intersect the circumcircle of $BMQ$ again at $Y \neq B$, and let $\overline{CX}$ intersect the circumcircle of $CMP$ again at $Z \neq C$. Prove that $A$, $Y$, and $Z$ are collinear. [i]Tiger Zhang[/i]

2019 Final Mathematical Cup, 1

Let $ABC$ be a triangle and let $D, E$ are points on its circumscribed circle, such that $D$ lies on arc $AB, E$ lies on arc $AC$ (smaller arcs) and $BD \parallel CE$ . Let the point F be the intersection of the lines $DA$ and $CE$, and the intersection of the lines $EA$ and $BD$ is $G$. Let $P$ be the second intersection of the circumscribed circles of $\vartriangle ABG$ and $\vartriangle ACF$. Prove that the line$ AP$ passes through the mid point of the side $BC$.

2005 China Team Selection Test, 1

Tags: geometry
Convex quadrilateral $ABCD$ is cyclic in circle $(O)$, $P$ is the intersection of the diagonals $AC$ and $BD$. Circle $(O_{1})$ passes through $P$ and $B$, circle $(O_{2})$ passes through $P$ and $A$, Circles $(O_{1})$ and $(O_{2})$ intersect at $P$ and $Q$. $(O_{1})$, $(O_{2})$ intersect $(O)$ at another points $E$, $F$ (besides $B$, $A$), respectively. Prove that $PQ$, $CE$, $DF$ are concurrent or parallel.

2010 Costa Rica - Final Round, 1

Tags: geometry
Consider points $D,E$ and $F$ on sides $BC,AC$ and $AB$, respectively, of a triangle $ABC$, such that $AD, BE$ and $CF$ concurr at a point $G$. The parallel through $G$ to $BC$ cuts $DF$ and $DE$ at $H$ and $I$, respectively. Show that triangles $AHG$ and $AIG$ have the same areas.

1969 Bulgaria National Olympiad, Problem 4

Tags: geometry , triangle
Find the sides of a triangle if it is known that the inscribed circle meets one of its medians in two points and these points divide the median into three equal segments and the area of the triangle is equal to $6\sqrt{14}\text{ cm}^2$.

1953 Czech and Slovak Olympiad III A, 2

Tags: geometry , triangle , angle
Let $\alpha,\beta,\gamma$ be angles of a triangle. Two of them can be expressed using an auxiliary angle $\varphi$ in a way that $$\alpha=\varphi+\frac\pi4,\quad\beta=\pi-3\varphi.$$ Show that $\alpha>\gamma.$

2012 JHMT, 6

Tags: geometry
Let $ABCD$ be a rectangle with area $2012$. There exist points $E$ on $AB$ and $F$ on $CD$ such that $DE = EF = F B$. Diagonal $AC$ intersects $DE$ at $X$ and $EF$ at $Y$ . Compute the area of triangle $EXY$ .

2018 USA Team Selection Test, 2

Tags: geometry
Let $ABCD$ be a convex cyclic quadrilateral which is not a kite, but whose diagonals are perpendicular and meet at $H$. Denote by $M$ and $N$ the midpoints of $\overline{BC}$ and $\overline{CD}$. Rays $MH$ and $NH$ meet $\overline{AD}$ and $\overline{AB}$ at $S$ and $T$, respectively. Prove that there exists a point $E$, lying outside quadrilateral $ABCD$, such that [list] [*] ray $EH$ bisects both angles $\angle BES$, $\angle TED$, and [*] $\angle BEN = \angle MED$. [/list] [i]Proposed by Evan Chen[/i]

2018 JHMT, 2

Tags: geometry
Two parallel chords $c, d$ in a circle have lengths $10$ and $14$ respectively, and the distance between them is $6$. If the length of the chord that is equidistant from $c$ and $d$ and parallel to $c$ and $d$ is $x$, find $x^2$.

2021 Czech-Polish-Slovak Junior Match, 2

An acute triangle $ABC$ is given. Let us denote by $D$ and $E$ the orthogonal projections, respectively of points $ B$ and $C$ on the bisector of the external angle $BAC$. Let $F$ be the point of intersection of the lines $BE$ and $CD$. Show that the lines $AF$ and $DE$ are perpendicular.

2011 AMC 12/AHSME, 16

Rhombus $ABCD$ has side length $2$ and $\angle B = 120 ^\circ$. Region $R$ consists of all points inside the rhombus that are closer to vertex $B$ than any of the other three vertices. What is the area of $R$? $ \textbf{(A)}\ \frac{\sqrt{3}}{3} \qquad \textbf{(B)}\ \frac{\sqrt{3}}{2} \qquad \textbf{(C)}\ \frac{2\sqrt{3}}{3} \qquad \textbf{(D)}\ 1+\frac{\sqrt{3}}{3} \qquad \textbf{(E)}\ 2 $

2000 Korea - Final Round, 2

Prove that an $m \times n$ rectangle can be constructed using copies of the following shape if and only if $mn$ is a multiple of $8$ where $m>1$ and $n>1$ [asy] draw ((0,0)--(0,1)); draw ((0,0)--(1.5,0)); draw ((0,1)--(.5,1)); draw ((.5,1)--(.5,0)); draw ((0,.5)--(1.5,.5)); draw ((1.5,.5)--(1.5,0)); draw ((1,.5)--(1,0)); [/asy]

1994 Korea National Olympiad, Problem 2

Let $ \alpha,\beta,\gamma$ be the angles of a triangle. Prove that $csc^2\frac{\alpha}{2}+csc^2\frac{\beta}{2}+csc^2\frac{\gamma}{2} \ge 12$ and find the conditions for equality.