Found problems: 25757
2025 Kosovo National Mathematical Olympiad`, P4
Let $ABC$ be a given triangle. Let $A_1$ and $A_2$ be points on the side $BC$. Let $B_1$ and $B_2$ be points on the side $CA$. Let $C_1$ and $C_2$ be points on the side $AB$. Suppose that the points $A_1,A_2,B_1,B_2,C_1$ and $C_2$ lie on a circle. Prove that the lines $AA_1, BB_1$ and $CC_1$ are concurrent if and only if $AA_2, BB_2$ and $CC_2$ are concurrent.
Kettering MO, 2017
[b]p1.[/b] An evil galactic empire is attacking the planet Naboo with numerous automatic drones. The fleet defending the planet consists of $101$ ships. By the decision of the commander of the fleet, some of these ships will be used as destroyers equipped with one rocket each or as rocket carriers that will supply destroyers with rockets. Destroyers can shoot rockets so that every rocket destroys one drone. During the attack each carrier will have enough time to provide each destroyer with one rocket but not more. How many destroyers and how many carriers should the commander assign to destroy the maximal number of drones and what is the maximal number of drones that the fleet can destroy?
[b]p2.[/b] Solve the inequality: $\sqrt{x^2-3x+2} \le \sqrt{x+7}$
[b]p3.[/b] Find all positive real numbers $x$ and $y$ that satisfy the following system of equations:
$$x^y = y^{x-y}$$
$$x^x = y^{12y}$$
[b]p4.[/b] A convex quadrilateral $ABCD$ with sides $AB = 2$, $BC = 8$, $CD = 6$, and $DA = 7$ is divided by a diagonal $AC$ into two triangles. A circle is inscribed in each of the obtained two triangles. These circles touch the diagonal at points $E$ and $F$. Find the distance between the points $E$ and $F$.
[b]p5.[/b] Find all positive integer solutions $n$ and $k$ of the following equation:
$$\underbrace{11... 1}_{n} \underbrace{00... 0}_{2n+3} + \underbrace{77...7}_{n+1} \underbrace{00...0}_{n+1}+\underbrace{11...1}_{n+2} = 3k^3.$$
[b]p6.[/b] The Royal Council of the planet Naboo consists of $12$ members. Some of these members mutually dislike each other. However, each member of the Council dislikes less than half of the members. The Council holds meetings around the round table. Queen Amidala knows about the relationship between the members so she tries to arrange their seats so that the members that dislike each other are not seated next to each other. But she does not know whether it is possible. Can you help the Queen in arranging the seats? Justify your answer.
PS. You should use hide for answers.
2003 District Olympiad, 2
In the right triangle $ABC$ ( $\angle A = 90^o$), $D$ is the intersection of the bisector of the angle $A$ with the side $(BC)$, and $P$ and $Q$ are the projections of the point $D$ on the sides $(AB),(AC)$ respectively . If $BQ \cap DP=\{M\}$, $CP \cap DQ=\{N\}$, $BQ\cap CP=\{H\}$, show that:
a) $PM = DN$
b) $MN \parallel BC$
c) $AH \perp BC$.
1948 Moscow Mathematical Olympiad, 155
What is the greatest number of rays in space beginning at one point and forming pairwise obtuse angles?
2010 Saudi Arabia IMO TST, 2
Points $M$ and $N$ are considered in the interior of triangle $ABC$ such that $\angle MAB = \angle NAC$ and $\angle MBA = \angle NBC$. Prove that $$\frac{AM \cdot AN}{AB \cdot AC}+ \frac{BM\cdot BN}{BA \cdot BC}+ \frac{CM \cdot CN }{CA \cdot CB}=1$$
Kvant 2020, M2602
For a given natural number $k{}$, a convex polygon is called $k{}$[i]-triangular[/i] if it is the intersection of some $k{}$ triangles.
[list=a]
[*]What is the largest $n{}$ for which there exist a $k{}$-triangular $n{}$-gon?
[*]What is the largest $n{}$ for which any convex $n{}$-gon is $k{}$-triangular?
[/list]
[i]Proposed by P. Kozhevnikov[/i]
Ukrainian TYM Qualifying - geometry, I.17
A right triangle when rotating around a large leg forms a cone with a volume of $100\pi$. Calculate the length of the path that passes through each vertex of the triangle at rotation of $180^o$ around the point of intersection of its bisectors, if the sum of the diameters of the circles, inscribed in the triangle and circumscribed around it, are equal to $17$.
2021 Belarusian National Olympiad, 11.8
Watermelon(a sphere) with radius $R$ lies on a table. $n$ flies fly above the table, each at distance $\sqrt{2}R$ from the center of the watermelon. At some moment any fly couldn't see any of the other flies. (Flies can't see each other, if the segment connecting them intersects or touches watermelon).
Find the maximum possible value of $n$
2025 AIME, 9
The parabola with equation $y = x^2 - 4$ is rotated $60^\circ$ counterclockwise around the origin. The unique point in the fourth quadrant where the original parabola and its image intersect has $y$-coordinate $\frac{a - \sqrt{b}}{c}$, where $a$, $b$, and $c$ are positive integers, and $a$ and $c$ are relatively prime. Find $a + b + c$.
2019 Czech-Polish-Slovak Junior Match, 6
Given is a cyclic quadrilateral $ABCD$. Points $K, L, M, N$ lying on sides $AB, BC, CD, DA$, respectively, satisfy $\angle ADK=\angle BCK$, $\angle BAL=\angle CDL$, $\angle CBM =\angle DAM$, $\angle DCN =\angle ABN$. Prove that lines $KM$ and $LN$ are perpendicular.
2010 Sharygin Geometry Olympiad, 25
For two different regular icosahedrons it is known that some six of their vertices are vertices of a regular octahedron. Find the ratio of the edges of these icosahedrons.
2021 Brazil National Olympiad, 7
Let $ABC$ be a triangle with $\angle ABC=90^{\circ}$. The square $BDEF$ is inscribed in $\triangle ABC$, such that $D,E,F$ are in the sides $AB,CA,BC$ respectively. The inradius of $\triangle EFC$ and $\triangle EDA$ are $c$ and $b$, respectively. Four circles $\omega_1,\omega_2,\omega_3,\omega_4$ are drawn inside the square $BDEF$, such that the radius of $\omega_1$ and $\omega_3$ are both equal to $b$ and the radius of $\omega_2$ and $\omega_4$ are both equal to $a$. The circle $\omega_1$ is tangent to $ED$, the circle $\omega_3$ is tangent to $BF$, $\omega_2$ is tangent to $EF$ and $\omega_4$ is tangent to $BD$, each one of these circles are tangent to the two closest circles and the circles $\omega_1$ and $\omega_3$ are tangents. Determine the ratio $\frac{c}{a}$.
2018 Saudi Arabia IMO TST, 2
Let $ABC$ be an acute-angled triangle inscribed in circle $(O)$. Let $G$ be a point on the small arc $AC$ of $(O)$ and $(K)$ be a circle passing through $A$ and $G$. Bisector of $\angle BAC$ cuts $(K)$ again at $P$. The point $E$ is chosen on $(K)$ such that $AE$ is parallel to $BC$. The line $PK$ meets the perpendicular bisector of $BC$ at $F$. Prove that $\angle EGF = 90^o$.
2016 ELMO Problems, 3
In a Cartesian coordinate plane, call a rectangle $standard$ if all of its sides are parallel to the $x$- and $y$- axes, and call a set of points $nice$ if no two of them have the same $x$- or $y$- coordinate. First, Bert chooses a nice set $B$ of $2016$ points in the coordinate plane. To mess with Bert, Ernie then chooses a set $E$ of $n$ points in the coordinate plane such that $B\cup E$ is a nice set with $2016+n$ points. Bert returns and then miraculously notices that there does not exist a standard rectangle that contains at least two points in $B$ and no points in $E$ in its interior. For a given nice set $B$ that Bert chooses, define $f(B)$ as the smallest positive integer $n$ such that Ernie can find a nice set $E$ of size $n$ with the aforementioned properties. Help Bert determine the minimum and maximum possible values of $f(B)$.
[i]Yannick Yao[/i]
2024 Brazil National Olympiad, 3
Let \( n \geq 3 \) be a positive integer. In a convex polygon with \( n \) sides, all the internal bisectors of its \( n \) internal angles are drawn. Determine, as a function of \( n \), the smallest possible number of distinct lines determined by these bisectors.
2012 Belarus Team Selection Test, 1
Let $m,n,k$ be pairwise relatively prime positive integers greater than $3$.
Find the minimal possible number of points on the plane with the following property:
there are $x$ of them which are the vertices of a regular $x$-gon for $x = m, x = n, x = k$.
(E.Piryutko)
2007 India National Olympiad, 1
In a triangle $ ABC$ right-angled at $ C$ , the median through $ B$ bisects the angle between $ BA$ and the bisector of $ \angle B$. Prove that
\[ \frac{5}{2} < \frac{AB}{BC} < 3\]
2002 Federal Competition For Advanced Students, Part 2, 3
Let $H$ be the orthocenter of an acute-angled triangle $ABC$. Show that the triangles $ABH,BCH$ and $CAH$ have the same perimeter if and only if the triangle $ABC$ is equilateral.
2011 German National Olympiad, 4
There are two points $A$ and $B$ in the plane.
a) Determine the set $M$ of all points $C$ in the plane for which $|AC|^2 +|BC|^2 = 2\cdot|AB|^2.$
b) Decide whether there is a point $C\in M$ such that $\angle ACB$ is maximal and if so, determine this angle.
2024 Indonesia TST, G
Let $ABCD$ be a cyclic quadrilateral with $\angle BAD < \angle ADC$. Let $M$ be the midpoint of the arc $CD$ not containing $A$. Suppose there is a point $P$ inside $ABCD$ such that $\angle ADB = \angle CPD$ and $\angle ADP = \angle PCB$.
Prove that lines $AD, PM$, and $BC$ are concurrent.
2021 Sharygin Geometry Olympiad, 4
Let $ABCD$ be a square with center $O$ , and $P$ be a point on the minor arc $CD$ of its circumcircle. The tangents from $P$ to the incircle of the square meet $CD$ at points $M$ and $N$. The lines $PM$ and $PN$ meet segments $BC$ and $AD$ respectively at points $Q$ and $R$. Prove that the median of triangle $OMN$ from $O$ is perpendicular to the segment $QR$ and equals to its half.
2016 India Regional Mathematical Olympiad, 1
Let $ABC$ be a right-angled triangle with $\angle B=90^{\circ}$. Let $I$ be the incenter of $ABC$. Draw a line perpendicular to $AI$ at $I$. Let it intersect the line $CB$ at $D$. Prove that $CI$ is perpendicular to $AD$ and prove that $ID=\sqrt{b(b-a)}$ where $BC=a$ and $CA=b$.
2023 Iranian Geometry Olympiad, 5
In triangle $ABC$ points $M$ and $N$ are the midpoints of sides $AC$ and $AB$, respectively and $D$ is the projection of $A$ into $BC$. Point $O$ is the circumcenter of $ABC$ and circumcircles of $BOC$, $DMN$ intersect at points $R, T$. Lines $DT$, $DR$ intersect line $MN$ at $E$ and $F$, respectively. Lines $CT$, $BR$ intersect at $K$. A point $P$ lies on $KD$ such that $PK$ is the angle bisector of $\angle BPC$. Prove that the circumcircles of $ART$ and $PEF$ are tangent.
[i]Proposed by Mehran Talaei - Iran[/i]
2007 Junior Balkan Team Selection Tests - Romania, 2
Consider a convex quadrilateral $ABCD$. Denote $M, \ N$ the points of tangency of the circle inscribed in $\triangle ABD$ with $AB, \ AD$, respectively and $P, \ Q$ the points of tangency of the circle inscribed in $\triangle CBD$ with the sides $CD, \ CB$, respectively. Assume that the circles inscribed in $\triangle ABD, \ \triangle CBD$ are tangent. Prove that:
a) $ABCD$ is circumscriptible.
b) $MNPQ$ is cyclic.
c) The circles inscribed in $\triangle ABC, \ \triangle ADC$ are tangent.
2007 Iran MO (2nd Round), 2
Two vertices of a cube are $A,O$ such that $AO$ is the diagonal of one its faces. A $n-$run is a sequence of $n+1$ vertices of the cube such that each $2$ consecutive vertices in the sequence are $2$ ends of one side of the cube. Is the $1386-$runs from $O$ to itself less than $1386-$runs from $O$ to $A$ or more than it?