Found problems: 25757
2023 Germany Team Selection Test, 3
In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$.
Prove that $B, C, X,$ and $Y$ are concyclic.
2014 Saint Petersburg Mathematical Olympiad, 2
All angles of $ABC$ are in $(30,90)$. Circumcenter of $ABC$ is $O$ and circumradius is $R$. Point $K$ is projection of $O$ to angle bisector of $\angle B$, point $M$ is midpoint $AC$. It is known, that $2KM=R$. Find $\angle B$
2020 Turkey Team Selection Test, 6
In a triangle $\triangle ABC$, $D$ and $E$ are respectively on $AB$ and $AC$ such that $DE\parallel BC$. $P$ is the intersection of $BE$ and $CD$. $M$ is the second intersection of $(APD)$ and $(BCD)$ , $N$ is the second intersection of $(APE)$ and $(BCE)$. $w$ is the circle passing through $M$ and $N$ and tangent to $BC$. Prove that the lines tangent to $w$ at $M$ and $N$ intersect on $AP$.
2014 Romania National Olympiad, 2
Let $ABCDA'B'C'D'$ be a cube with side $AB = a$. Consider points $E \in (AB)$ and $F \in (BC)$ such that $AE + CF = EF$.
a) Determine the measure the angle formed by the planes $(D'DE)$ and $(D'DF)$.
b) Calculate the distance from $D'$ to the line $EF$.
2021 Bulgaria National Olympiad, 6
Point $S$ is the midpoint of arc $ACB$ of the circumscribed circle $k$ around triangle $ABC$ with $AC>BC$. Let $I$ be the incenter of triangle $ABC$. Line $SI$ intersects $k$ again at point $T$. Let $D$ be the reflection of $I$ across $T$ and $M$ be the midpoint of side $AB$. Line $IM$ intersects the line through $D$, parallel to $AB$, at point $E$. Prove that $AE=BD$.
1981 Tournament Of Towns, (008) 2
$M$ is a finite set of points in a plane. Point $O$ in the plane is called an “almost centre of symmetry” of set $M$ if it is possible to remove from $M$ one point in such a way that among the remaining members $O$ is the centre of symmetry in the usual sense. How many such “almost centres of symmetry” may a finite point set in a plane have? Indicate all such points.
(V Prasolov, Moscow)
2024 Iranian Geometry Olympiad, 3
In the triangle $\bigtriangleup ABC$ let $D$ be the foot of the altitude from $A$ to the side $BC$ and $I$, $I_A$, $I_C$ be the incenter, $A$-excenter, and $C$-excenter, respectively. Denote by $P\neq B$ and $Q\neq D$ the other intersection points of the circle $\bigtriangleup BDI_C$ with the lines $BI$ and $DI_A$, respectively. Prove that $AP=AQ$.
[i]Proposed Michal Jan'ik - Czech Republic[/i]
2007 Cuba MO, 7
Prove that given $n$ points in the plane, not all aligned, there exists a line that passes through exactly two of them.
[hide=original wording]Demostrar que dados n puntos en el plano, no todos alineados, existe una recta que pasa por exactamente dos de ellos.[/hide]
2013 USA Team Selection Test, 3
Let $ABC$ be a scalene triangle with $\angle BCA = 90^{\circ}$, and let $D$ be the foot of the altitude from $C$. Let $X$ be a point in the interior of the segment $CD$. Let $K$ be the point on the segment $AX$ such that $BK = BC$. Similarly, let $L$ be the point on the segment $BX$ such that $AL = AC$. The circumcircle of triangle $DKL$ intersects segment $AB$ at a second point $T$ (other than $D$). Prove that $\angle ACT = \angle BCT$.
2018 Tournament Of Towns, 6.
In the land of knights (who always tell the truth) and liars (who always lie), 10 people sit at a round table, each at a vertex of an inscribed regular 10-gon, at least one of them is a liar. A traveler can stand at any point outside the table and ask the people: ”What is the distance from me to the nearest liar at the table?” After that each person at the table gives him an answer. What is the minimal number of questions the traveler has to ask to determine which people at the table are liars? (Both the people at the table and the traveler should be considered as points, and everyone can compute the distance between any two points) (10 points)
Maxim Didin
May Olympiad L1 - geometry, 2014.4
Let $ABC$ be a right triangle and isosceles, with $\angle C = 90^o$. Let $M$ be the midpoint of $AB$ and $N$ the midpoint of $AC$. Let $ P$ be such that $MNP$ is an equilateral triangle with $ P$ inside the quadrilateral $MBCN$. Calculate the measure of $\angle CAP$
2016 Novosibirsk Oral Olympiad in Geometry, 3
A square is drawn on a sheet of grid paper on the sides of the cells $ABCD$ with side $8$. Point $E$ is the midpoint of side $BC$, $Q$ is such a point on the diagonal $AC$ such that $AQ: QC = 3: 1$. Find the angle between straight lines $AE$ and $DQ$.
2023 Israel TST, P2
Let $ABC$ be an isosceles triangle, $AB=AC$ inscribed in a circle $\omega$. The $B$-symmedian intersects $\omega$ again at $D$. The circle through $C,D$ and tangent to $BC$ and the circle through $A,D$ and tangent to $CD$ intersect at points $D,X$. The incenter of $ABC$ is denoted $I$. Prove that $B,C,I,X$ are concyclic.
2021 Macedonian Team Selection Test, Problem 6
Let $ABC$ be an acute triangle such that $AB<AC$ with orthocenter $H$. The altitudes $BH$ and $CH$ intersect $AC$ and $AB$ at $B_{1}$ and $C_{1}$. Denote by $M$ the midpoint of $BC$. Let $l$ be the line parallel to $BC$ passing through $A$. The circle around $ CMC_{1}$ meets the line $l$ at points $X$ and $Y$, such that $X$ is on the same side of the line $AH$ as $B$ and $Y$ is on the same side of $AH$ as $C$. The lines $MX$ and $MY$ intersect $CC_{1}$ at $U$ and $V$ respectively. Show that the circumcircles of $ MUV$ and $ B_{1}C_{1}H$ are tangent.
[i] Authored by Nikola Velov[/i]
2002 Hungary-Israel Binational, 2
Let $A', B' , C'$ be the projections of a point $M$ inside a triangle $ABC$ onto the sides $BC, CA, AB$, respectively. Define $p(M ) = \frac{MA'\cdot MB'\cdot MC'}{MA \cdot MB \cdot MC}$ . Find the position of point $M$ that maximizes $p(M )$.
2018 China Team Selection Test, 5
Let $ABC$ be a triangle with $\angle BAC > 90 ^{\circ}$, and let $O$ be its circumcenter and $\omega$ be its circumcircle. The tangent line of $\omega$ at $A$ intersects the tangent line of $\omega$ at $B$ and $C$ respectively at point $P$ and $Q$. Let $D,E$ be the feet of the altitudes from $P,Q$ onto $BC$, respectively. $F,G$ are two points on $\overline{PQ}$ different from $A$, so that $A,F,B,E$ and $A,G,C,D$ are both concyclic. Let M be the midpoint of $\overline{DE}$. Prove that $DF,OM,EG$ are concurrent.
2025 India STEMS Category B, 3
Let $ABC$ be an acute scalene triangle with orthocenter $H$. Let $M$ be the midpoint of $BC$. $N$ is the point on line $AM$ such that $(BMN)$ is tangent to $AB$. Finally, let $H'$ be the reflection of $H$ in $B$. Prove that $\angle ANH'=90^{\circ}$.
[i]Proposed by Malay Mahajan and Siddharth Choppara[/i]
2019 Estonia Team Selection Test, 10
Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.
Denmark (Mohr) - geometry, 2012.1
Inside a circle with radius $6$ lie four smaller circles with centres $A,B,C$ and $D$. The circles touch each other as shown. The point where the circles with centres $A$ and $C$ touch each other is the centre of the big circle. Calculate the area of quadrilateral $ABCD$.
[img]https://1.bp.blogspot.com/-FFsiOOdcjao/XzT_oJYuQAI/AAAAAAAAMVk/PpyUNpDBeEIESMsiElbexKOFMoCXRVaZwCLcBGAsYHQ/s0/2012%2BMohr%2Bp1.png[/img]
DMM Individual Rounds, 2007 Tie
[b]p1.[/b] Let $p_b(m)$ be the sum of digits of $m$ when $m$ is written in base $b$. (So, for example, $p_2(5) = 2$). Let $f(0) = 2007^{2007}$, and for $n \ge 0$ let $f(n + 1) = p_7(f(n))$. What is $f(10^{10000})$?
[b]p2.[/b] Compute:
$$\sum^{\infty}_{n=1}\frac{(-1)^{n+1}4n}{n^4 - 8n^2 + 4}.$$
[b]p3.[/b] $ABCDEFGH$ is an octagon whose eight interior angles all have the same measure. The lengths of the eight sides of this octagon are, in some order, $$2, 2\sqrt2, 4, 4\sqrt2, 6, 7, 7, \,\,\, and \,\,\, 8.$$
Find the area of $ABCDEFGH$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 Regional Olympiad of Mexico Center Zone, 2
Let $ABC$ be a triangle and let $L$, $M$, $N$ be the midpoints of the sides $BC$, $CA$ and $AB$ , respectively. The points $P$ and $Q$ lie on $AB$ and $BC$, respectively; the points $R$ and $S$ are such that $N$ is the midpoint of $PR$ and $L$ is the midpoint of $QS$. Show that if $PS$ and $QR$ are perpendicular, then their intersection lies on in the circumcircle of triangle $LMN$.
1997 All-Russian Olympiad, 3
The incircle of triangle $ABC$ touches sides $AB$;$BC$;$CA$ at $M$;$N$;$K$, respectively.
The line through $A$ parallel to $NK$ meets $MN$ at $D$.
The line through $A$ parallel to $MN$ meets $NK$ at $E$.
Show that the line $DE$ bisects sides $AB$ and $AC$ of triangle $ABC$.
[i]M. Sonkin[/i]
1991 IMO Shortlist, 1
Given a point $ P$ inside a triangle $ \triangle ABC$. Let $ D$, $ E$, $ F$ be the orthogonal projections of the point $ P$ on the sides $ BC$, $ CA$, $ AB$, respectively. Let the orthogonal projections of the point $ A$ on the lines $ BP$ and $ CP$ be $ M$ and $ N$, respectively. Prove that the lines $ ME$, $ NF$, $ BC$ are concurrent.
[i]Original formulation:[/i]
Let $ ABC$ be any triangle and $ P$ any point in its interior. Let $ P_1, P_2$ be the feet of the perpendiculars from $ P$ to the two sides $ AC$ and $ BC.$ Draw $ AP$ and $ BP,$ and from $ C$ drop perpendiculars to $ AP$ and $ BP.$ Let $ Q_1$ and $ Q_2$ be the feet of these perpendiculars. Prove that the lines $ Q_1P_2,Q_2P_1,$ and $ AB$ are concurrent.
2023 Novosibirsk Oral Olympiad in Geometry, 7
Squares $ABCD$ and $BEFG$ are located as shown in the figure. It turned out that points $A, G$ and $E$ lie on the same straight line. Prove that then the points $D, F$ and $E$ also lie on the same line.
[img]https://cdn.artofproblemsolving.com/attachments/4/2/9faf29a399d3a622c84f5d4a3cfcf5e99539c0.png[/img]
1997 Poland - Second Round, 6
Let eight points be given in a unit cube. Prove that two of these points are on a distance not greater than $1$.