This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2014 National Olympiad First Round, 17

Let $E$ be the midpoint of side $[AB]$ of square $ABCD$. Let the circle through $B$ with center $A$ and segment $[EC]$ meet at $F$. What is $|EF|/|FC|$? $ \textbf{(A)}\ 2 \qquad\textbf{(B)}\ \dfrac{3}{2} \qquad\textbf{(C)}\ \sqrt{5}-1 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \sqrt{3} $

1978 Poland - Second Round, 2

In the plane, a set of points $ M $ is given with the following properties: 1. The points of the set $ M $ do not lie on one straight line, 2. If the points $ A, B, C$, and $D$ are vertices of a parallelogram and $ A, B, C \in M $, then $ D \in M $, 3. If $ A, B \in M $, then $ AB \geq 1 $. Prove that there exist two families of parallel lines such that $ M $ is the set of all intersection points of the lines of the first family with the lines of the second family.

2018 Saint Petersburg Mathematical Olympiad, 3

Tags: geometry
$ABC$ is acuteangled triangle. Variable point $X$ lies on segment $AC$, and variable point $Y$ lies on the ray $BC$ but not segment $BC$, such that $\angle ABX+\angle CXY =90$. $T$ is projection of $B$ on the $XY$. Prove that all points $T$ lies on the line.

2013 Dutch BxMO/EGMO TST, 5

Let $ABCD$ be a cyclic quadrilateral for which $|AD| =|BD|$. Let $M$ be the intersection of $AC$ and $BD$. Let $I$ be the incentre of $\triangle BCM$. Let $N$ be the second intersection pointof $AC$ and the circumscribed circle of $\triangle BMI$. Prove that $|AN| \cdot |NC| = |CD | \cdot |BN|$.

2011 JBMO Shortlist, 1

Tags: geometry
Let $ABC$ be an isosceles triangle with $AB=AC$. On the extension of the side ${CA}$ we consider the point ${D}$ such that ${AD<AC}$. The perpendicular bisector of the segment ${BD}$ meets the internal and the external bisectors of the angle $\angle BAC$ at the points ${E}$and ${Z}$, respectively. Prove that the points ${A, E, D, Z}$ are concyclic.

LMT Guts Rounds, 2018 F

[u]Round 5[/u] [b]p13.[/b] Express the number $3024_8$ in base $2$. [b]p14.[/b] $\vartriangle ABC$ has a perimeter of $10$ and has $AB = 3$ and $\angle C$ has a measure of $60^o$. What is the maximum area of the triangle? [b]p15.[/b] A weighted coin comes up as heads $30\%$ of the time and tails $70\%$ of the time. If I flip the coin $25$ times, howmany tails am I expected to flip? [u]Round 6[/u] [b]p16.[/b] A rectangular box with side lengths $7$, $11$, and $13$ is lined with reflective mirrors, and has edges aligned with the coordinate axes. A laser is shot from a corner of the box in the direction of the line $x = y = z$. Find the distance traveled by the laser before hitting a corner of the box. [b]p17.[/b] The largest solution to $x^2 + \frac{49}{x^2}= 2018$ can be represented in the form $\sqrt{a}+\sqrt{b}$. Compute $a +b$. [b]p18.[/b] What is the expected number of black cards between the two jokers of a $54$ card deck? [u]Round 7[/u] p19. Compute ${6 \choose 0} \cdot 2^0 + {6 \choose 1} \cdot 2^1+ {6 \choose 2} \cdot 2^2+ ...+ {6 \choose 6} \cdot 2^6$. [b]p20.[/b] Define a sequence by $a_1 =5$, $a_{n+1} = a_n + 4 * n -1$ for $n\ge 1$. What is the value of $a_{1000}$? [b]p21.[/b] Let $\vartriangle ABC$ be the triangle such that $\angle B = 15^o$ and $\angle C = 30^o$. Let $D$ be the point such that $\vartriangle ADC$ is an isosceles right triangle where $D$ is in the opposite side from $A$ respect to $BC$ and $\angle DAC = 90^o$. Find the $\angle ADB$. [u]Round 8[/u] [b]p22.[/b] Say the answer to problem $24$ is $z$. Compute $gcd (z,7z +24).$ [b]p23.[/b] Say the answer to problem $22$ is $x$. If $x$ is $1$, write down $1$ for this question. Otherwise, compute $$\sum^{\infty}_{k=1} \frac{1}{x^k}$$ [b]p24.[/b] Say the answer to problem $23$ is $y$. Compute $$\left \lfloor \frac{y^2 +1}{y} \right \rfloor$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3165983p28809209]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166045p28809814]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1972 IMO Longlists, 12

A circle $k = (S, r)$ is given and a hexagon $AA'BB'CC'$ inscribed in it. The lengths of sides of the hexagon satisfy $AA' = A'B, BB' = B'C, CC' = C'A$. Prove that the area $P$ of triangle $ABC$ is not greater than the area $P'$ of triangle $A'B'C'$. When does $P = P'$ hold?

2015 IFYM, Sozopol, 2

Tags: geometry
Given any $60$ points on a circle of radius $1$, prove that there is a point on the circle the sum of whose distances to these $60$ points is at most $80$.

2015 Iran Team Selection Test, 2

Tags: geometry
$I_b$ is the $B$-excenter of the triangle $ABC$ and $\omega$ is the circumcircle of this triangle. $M$ is the middle of arc $BC$ of $\omega$ which doesn't contain $A$. $MI_b$ meets $\omega$ at $T\not =M$. Prove that $$ TB\cdot TC=TI_b^2.$$

2016 ASMT, 1

Tags: geometry
A circle is inscribed in a unit square, and a diagonal of the square is drawn. Find the total length of the segments of the diagonal not contained within the circle.

2010 Kazakhstan National Olympiad, 4

For $x;y \geq 0$ prove the inequality: $\sqrt{x^2-x+1} \sqrt{y^2-y+1}+ \sqrt{x^2+x+1} \sqrt{y^2+y+1} \geq 2(x+y)$

1982 IMO Longlists, 46

Prove that if a diagonal is drawn in a quadrilateral inscribed in a circle, the sum of the radii of the circles inscribed in the two triangles thus formed is the same, no matter which diagonal is drawn.

2016 Cono Sur Olympiad, 5

Tags: incenter , geometry
Let $ABC$ be a triangle inscribed on a circle with center $O$. Let $D$ and $E$ be points on the sides $AB$ and $BC$,respectively, such that $AD = DE = EC$. Let $X$ be the intersection of the angle bisectors of $\angle ADE$ and $\angle DEC$. If $X \neq O$, show that, the lines $OX$ and $DE$ are perpendicular.

2024 Sharygin Geometry Olympiad, 8.2

Tags: geometry
Let $CM$ be the median of an acute-angled triangle $ABC$, and $P$ be the projection of the orthocenter $H$ to the bisector of $\angle C$. Prove that $MP$ bisects the segment $CH$.

2021 Sharygin Geometry Olympiad, 19

A point $P$ lies inside a convex quadrilateral $ABCD$. Common internal tangents to the incircles of triangles $PAB$ and $PCD$ meet at point $Q$, and common internal tangents to the incircles of $PBC,PAD$ meet at point $R$. Prove that $P,Q,R$ are collinear.

2023 AMC 8, 7

A rectangle, with sides parallel to the $x-$axis and $y-$axis, has opposite vertices located at $(15, 3)$ and$(16, 5).$ A line is drawn through points $A(0, 0)$ and $B(3, 1).$ Another line is drawn through points $C(0, 10)$ and $D(2, 9).$ How many points on the rectangle lie on at least one of the two lines? [asy] size(9cm); draw((0,-.5)--(0,11),EndArrow(size=.15cm)); draw((1,0)--(1,11),mediumgray); draw((2,0)--(2,11),mediumgray); draw((3,0)--(3,11),mediumgray); draw((4,0)--(4,11),mediumgray); draw((5,0)--(5,11),mediumgray); draw((6,0)--(6,11),mediumgray); draw((7,0)--(7,11),mediumgray); draw((8,0)--(8,11),mediumgray); draw((9,0)--(9,11),mediumgray); draw((10,0)--(10,11),mediumgray); draw((11,0)--(11,11),mediumgray); draw((12,0)--(12,11),mediumgray); draw((13,0)--(13,11),mediumgray); draw((14,0)--(14,11),mediumgray); draw((15,0)--(15,11),mediumgray); draw((16,0)--(16,11),mediumgray); draw((-.5,0)--(17,0),EndArrow(size=.15cm)); draw((0,1)--(17,1),mediumgray); draw((0,2)--(17,2),mediumgray); draw((0,3)--(17,3),mediumgray); draw((0,4)--(17,4),mediumgray); draw((0,5)--(17,5),mediumgray); draw((0,6)--(17,6),mediumgray); draw((0,7)--(17,7),mediumgray); draw((0,8)--(17,8),mediumgray); draw((0,9)--(17,9),mediumgray); draw((0,10)--(17,10),mediumgray); draw((-.13,1)--(.13,1)); draw((-.13,2)--(.13,2)); draw((-.13,3)--(.13,3)); draw((-.13,4)--(.13,4)); draw((-.13,5)--(.13,5)); draw((-.13,6)--(.13,6)); draw((-.13,7)--(.13,7)); draw((-.13,8)--(.13,8)); draw((-.13,9)--(.13,9)); draw((-.13,10)--(.13,10)); draw((1,-.13)--(1,.13)); draw((2,-.13)--(2,.13)); draw((3,-.13)--(3,.13)); draw((4,-.13)--(4,.13)); draw((5,-.13)--(5,.13)); draw((6,-.13)--(6,.13)); draw((7,-.13)--(7,.13)); draw((8,-.13)--(8,.13)); draw((9,-.13)--(9,.13)); draw((10,-.13)--(10,.13)); draw((11,-.13)--(11,.13)); draw((12,-.13)--(12,.13)); draw((13,-.13)--(13,.13)); draw((14,-.13)--(14,.13)); draw((15,-.13)--(15,.13)); draw((16,-.13)--(16,.13)); label(scale(.7)*"$1$", (1,-.13), S); label(scale(.7)*"$2$", (2,-.13), S); label(scale(.7)*"$3$", (3,-.13), S); label(scale(.7)*"$4$", (4,-.13), S); label(scale(.7)*"$5$", (5,-.13), S); label(scale(.7)*"$6$", (6,-.13), S); label(scale(.7)*"$7$", (7,-.13), S); label(scale(.7)*"$8$", (8,-.13), S); label(scale(.7)*"$9$", (9,-.13), S); label(scale(.7)*"$10$", (10,-.13), S); label(scale(.7)*"$11$", (11,-.13), S); label(scale(.7)*"$12$", (12,-.13), S); label(scale(.7)*"$13$", (13,-.13), S); label(scale(.7)*"$14$", (14,-.13), S); label(scale(.7)*"$15$", (15,-.13), S); label(scale(.7)*"$16$", (16,-.13), S); label(scale(.7)*"$1$", (-.13,1), W); label(scale(.7)*"$2$", (-.13,2), W); label(scale(.7)*"$3$", (-.13,3), W); label(scale(.7)*"$4$", (-.13,4), W); label(scale(.7)*"$5$", (-.13,5), W); label(scale(.7)*"$6$", (-.13,6), W); label(scale(.7)*"$7$", (-.13,7), W); label(scale(.7)*"$8$", (-.13,8), W); label(scale(.7)*"$9$", (-.13,9), W); label(scale(.7)*"$10$", (-.13,10), W); dot((0,0)); label(scale(.65)*"$A$", (0,0), NE); dot((3,1)); label(scale(.65)*"$B$", (3,1), NE); dot((0,10)); label(scale(.65)*"$C$", (0,10), NE); dot((2,9)); label(scale(.65)*"$D$", (2,9), NE); draw((15,3)--(16,3)--(16,5)--(15,5)--cycle,linewidth(1.125)); dot((15,3)); dot((16,3)); dot((16,5)); dot((15,5)); [/asy] $\textbf{(A) } 0\qquad\textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) } 4$

1982 AMC 12/AHSME, 14

In the adjoining figure, points $B$ and $C$ lie on line segment $AD$, and $AB$, $BC$, and $CD$ are diameters of circle $O$, $N$, and $P$, respectively. Circles $O$, $N$, and $P$ all have radius $15$ and the line $AG$ is tangent to circle $P$ at $G$. If $AG$ intersects circle $N$ at points $E$ and $F$, then chord $EF$ has length [asy] size(250); defaultpen(fontsize(10)); pair A=origin, O=(1,0), B=(2,0), N=(3,0), C=(4,0), P=(5,0), D=(6,0), G=tangent(A,P,1,2), E=intersectionpoints(A--G, Circle(N,1))[0], F=intersectionpoints(A--G, Circle(N,1))[1]; draw(Circle(O,1)^^Circle(N,1)^^Circle(P,1)^^G--A--D, linewidth(0.7)); dot(A^^B^^C^^D^^E^^F^^G^^O^^N^^P); label("$A$", A, W); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, dir(0)); label("$P$", P, S); label("$N$", N, S); label("$O$", O, S); label("$E$", E, dir(120)); label("$F$", F, NE); label("$G$", G, dir(100));[/asy] $\textbf {(A) } 20 \qquad \textbf {(B) } 15\sqrt{2} \qquad \textbf {(C) } 24 \qquad \textbf{(D) } 25 \qquad \textbf {(E) } \text{none of these}$

2016 Sharygin Geometry Olympiad, P20

The incircle $\omega$ of a triangle $ABC$ touches $BC, AC$ and $AB$ at points $A_0, B_0$ and $C_0$ respectively. The bisectors of angles $B$ and $C$ meet the perpendicular bisector to segment $AA_0$ at points $Q$ and $P$ respectively. Prove that $PC_0$ and $QB_0$ meet on $\omega$ .

2022 Taiwan TST Round 3, 1

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.

1995 National High School Mathematics League, 11

Color the vertexes of a quadrangular pyramid in one color, satisfying that two end points of any edge are in different colors. We have only 5 colors, then the number of ways coloring the quadrangular pyramid is________.

1997 All-Russian Olympiad, 4

An $n\times n\times n$ cube is divided into unit cubes. We are given a closed non-self-intersecting polygon (in space), each of whose sides joins the centers of two unit cubes sharing a common face. The faces of unit cubes which intersect the polygon are said to be distinguished. Prove that the edges of the unit cubes may be colored in two colors so that each distinguished face has an odd number of edges of each color, while each nondistinguished face has an even number of edges of each color. [i]M. Smurov[/i]

2008 Sharygin Geometry Olympiad, 8

Tags: geometry
(A.Akopyan, V.Dolnikov) Given a set of points inn the plane. It is known that among any three of its points there are two such that the distance between them doesn't exceed 1. Prove that this set can be divided into three parts such that the diameter of each part does not exceed 1.

2014 USAMO, 5

Let $ABC$ be a triangle with orthocenter $H$ and let $P$ be the second intersection of the circumcircle of triangle $AHC$ with the internal bisector of the angle $\angle BAC$. Let $X$ be the circumcenter of triangle $APB$ and $Y$ the orthocenter of triangle $APC$. Prove that the length of segment $XY$ is equal to the circumradius of triangle $ABC$.

2009 Costa Rica - Final Round, 6

Let $ \Delta ABC$ with incircle $ \Gamma$, let $ D, E$ and $ F$ the tangency points of $ \Gamma$ with sides $ BC, AC$ and $ AB$, respectively and let $ P$ the intersection point of $ AD$ with $ \Gamma$. $ a)$ Prove that $ BC, EF$ and the straight line tangent to $ \Gamma$ for $ P$ concur at a point $ A'$. $ b)$ Define $ B'$ and $ C'$ in an anologous way than $ A'$. Prove that $ A'\minus{}B'\minus{}C'$

2018 AMC 12/AHSME, 8

Tags: geometry
All of the triangles in the diagram below are similar to iscoceles triangle $ABC$, in which $AB=AC$. Each of the 7 smallest triangles has area 1, and $\triangle ABC$ has area 40. What is the area of trapezoid $DBCE$? [asy] unitsize(5); dot((0,0)); dot((60,0)); dot((50,10)); dot((10,10)); dot((30,30)); draw((0,0)--(60,0)--(50,10)--(30,30)--(10,10)--(0,0)); draw((10,10)--(50,10)); label("$B$",(0,0),SW); label("$C$",(60,0),SE); label("$E$",(50,10),E); label("$D$",(10,10),W); label("$A$",(30,30),N); draw((10,10)--(15,15)--(20,10)--(25,15)--(30,10)--(35,15)--(40,10)--(45,15)--(50,10)); draw((15,15)--(45,15)); [/asy] $\textbf{(A) } 16 \qquad \textbf{(B) } 18 \qquad \textbf{(C) } 20 \qquad \textbf{(D) } 22 \qquad \textbf{(E) } 24 $