This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2008 Hong Kong TST, 3

Let $ ABCDE$ be an arbitrary convex pentagon. Suppose that $ BD\cap CE \equal{} A'$, $ CE \cap DA \equal{} B'$, $ DA\cap EB \equal{} C'$, $ EB\cap AC \equal{} D'$ and $ AC \cap BD \equal{} E'$. Suppose also that $ (ABD')\cap (AC'E) \equal{} A''$, $ (BCE')\cap (BD'A) \equal{} B''$, $ (CDA')\cap (CE'B) \equal{} C''$, $ (DEB')\cap DA'C \equal{} D''$ and $ (EAC')\cap (EB'D) \equal{} E''$. Prove that $ AA''$, $ BB''$, $ CC''$, $ DD''$ and $ EE''$ are concurrent.

Mid-Michigan MO, Grades 7-9, 2004

[b]p1.[/b] Two players play the following game. On the lowest left square of an $8\times 8$ chessboard there is a rook. The first player is allowed to move the rook up or to the right by an arbitrary number of squares. The second player is also allowed to move the rook up or to the right by an arbitrary number of squares. Then the first player is allowed to do this again, and so on. The one who moves the rook to the upper right square wins. Who has a winning strategy? [b]p2.[/b] In Crocodile Country there are banknotes of $1$ dollar, $10$ dollars, $100$ dollars, and $1,000$ dollars. Is it possible to get 1,000,000 dollars by using $250,000$ banknotes? [b]p3.[/b] Fifteen positive numbers (not necessarily whole numbers) are placed around the circle. It is known that the sum of every four consecutive numbers is $30$. Prove that each number is less than $15$. [b]p4.[/b] Donald Duck has $100$ sticks, each of which has length $1$ cm or $3$ cm. Prove that he can break into $2$ pieces no more than one stick, after which he can compose a rectangle using all sticks. [b]p5.[/b] Three consecutive $2$ digit numbers are written next to each other. It turns out that the resulting $6$ digit number is divisible by $17$. Find all such numbers. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2000 Tournament Of Towns, 3

In each lateral face of a pentagonal prism at least one of the four angles is equal to $f$. Find all possible values of $f$. (A Shapovalov)

2020 Regional Olympiad of Mexico Center Zone, 4

Tags: geometry , square , circles
Let $\Gamma_1$ be a circle with center $O$ and $A$ a point on it. Consider the circle $\Gamma_2$ with center at $A$ and radius $AO$. Let $P$ and $Q$ be the intersection points of $\Gamma_1$and $\Gamma_2$. Consider the circle $\Gamma_3$ with center at $P$ and radius $PQ$. Let $C$ be the second intersection point of $\Gamma_3$ and $\Gamma_1$. The line $OP$ cuts $\Gamma_3$ at $R$ and $S$, with $R$ outside $\Gamma_1$. $RC$ cuts $\Gamma_1$ into $B$. $CS$ cuts $\Gamma_1$ into $D$. Show that $ABCD$ is a square.

1908 Eotvos Mathematical Competition, 3

A regular polygon of 10 sides (a regular decagon) may be inscribed in a circle in the following two distinct ways: Divide the circumference into $10$ equal arcs and (1) join each division point to the next by straight line segments, (2) join each division point to the next but two by straight line segments. (See figures). Prove that the difference in the side lengths of these two decagons is equal to the radius of their circumscribed circle. [img]https://cdn.artofproblemsolving.com/attachments/7/9/41c38d08f4f89e07852942a493df17eaaf7498.png[/img]

2021 Alibaba Global Math Competition, 10

In $\mathbb{R}^3$, for a rectangular box $\Delta$, let $10\Delta$ be the box with the same center as $\Delta$ but dilated by $10$. For example, if $\Delta$ is an $1 \times 1 \times 10$ box (hence with Lebesgue measure $10$), then $10\Delta$ is the $10 \times 10 \times 100$ box with the same center and orientation as $\Delta$. \medskip If two rectangular boxes $\Delta_1$ and $\Delta_2$ satisfy $\Delta_1 \subset 10\Delta_2$ and $\Delta_2 \subset 10 \Delta_1$, we say that they are [i]almost identical[/i]. Find the largest real number $a$ such that the following holds for some $C=C(a)>0$: For every positive integer $N$ and every collection $S$ of $1 \times 1 \times N$ boxes in $\mathbb{R}^3$, assuming that (i) $\vert S\vert=N$, (ii) every pair of boxes $(\Delta_1,\Delta_2)$ taken from $S$ are not almost identical, and (iii) the long edge of each box in $S$ forms an angle $\frac{\pi}{4}$ against the $xy$-plane. Then the volume \[\left\vert \bigcup_{\Delta \in S} \Delta\right\vert \ge CN^a.\]

2021 Bangladesh Mathematical Olympiad, Problem 6

Tags: geometry
Let $ABC$ be an acute-angled triangle. The external bisector of $\angle BAC$ meets the line $BC$ at point $N$. Let $M$ be the midpoint of $BC$. $P$ and $Q$ are two points on line $AN$ such that, $\angle PMN=\angle MQN=90^{\circ}$. If $PN=5$ and $BC=3$, then the length $QA$ can be expressed as $\frac{a}{b}$ where $a$ and $b$ are co-prime positive integers. What is the value of $(a+b)$?

2015 IMO Shortlist, G7

Tags: geometry
Let $ABCD$ be a convex quadrilateral, and let $P$, $Q$, $R$, and $S$ be points on the sides $AB$, $BC$, $CD$, and $DA$, respectively. Let the line segment $PR$ and $QS$ meet at $O$. Suppose that each of the quadrilaterals $APOS$, $BQOP$, $CROQ$, and $DSOR$ has an incircle. Prove that the lines $AC$, $PQ$, and $RS$ are either concurrent or parallel to each other.

2024 239 Open Mathematical Olympiad, 5

Tags: geometry
A quadrilateral $ABCD$ has an incircle $\Gamma$. The points $X, Y$ are chosen so that $AX-CX=AB-BC$, $BX-DX=BC-CD$, $CY-AY=AD-DC$ and $DY-BY=AB-AD$. Given that the center of $\Gamma$ lies on $XY$, show that $AC, BD, XY$ are concurrent.

2007 Moldova Team Selection Test, 4

Consider a convex polygon $A_{1}A_{2}\ldots A_{n}$ and a point $M$ inside it. The lines $A_{i}M$ intersect the perimeter of the polygon second time in the points $B_{i}$. The polygon is called balanced if all sides of the polygon contain exactly one of points $B_{i}$ (strictly inside). Find all balanced polygons. [Note: The problem originally asked for which $n$ all convex polygons of $n$ sides are balanced. A misunderstanding made this version of the problem appear at the contest]

2013 Greece National Olympiad, 4

Let a triangle $ABC$ inscribed in circle $c(O,R)$ and $D$ an arbitrary point on $BC$(different from the midpoint).The circumscribed circle of $BOD$,which is $(c_1)$, meets $c(O,R)$ at $K$ and $AB$ at $Z$.The circumscribed circle of $COD$ $(c_2)$,meets $c(O,R)$ at $M$ and $AC$ at $E$.Finally, the circumscribed circle of $AEZ$ $(c_3)$,meets $c(O,R)$ at $N$.Prove that $\triangle{ABC}=\triangle{KMN}.$

Maryland University HSMC part II, 2022

[b]p1.[/b] Find a real number $x$ for which $x\lfloor x \rfloor = 1234.$ Note: $\lfloor x\rfloor$ is the largest integer less than or equal to $x$. [b]p2.[/b] Let $C_1$ be a circle of radius $1$, and $C_2$ be a circle that lies completely inside or on the boundary of $C_1$. Suppose$ P$ is a point that lies inside or on $C_2$. Suppose $O_1$, and $O_2$ are the centers of $C_1$, and $C_2$, respectively. What is the maximum possible area of $\vartriangle O_1O_2P$? Prove your answer. [b]p3.[/b] The numbers $1, 2, . . . , 99$ are written on a blackboard. We are allowed to erase any two distinct (but perhaps equal) numbers and replace them by their nonnegative difference. This operation is performed until a single number $k$ remains on the blackboard. What are all the possible values of $k$? Prove your answer. Note: As an example if we start from $1, 2, 3, 4$ on the board, we can proceed by erasing $1$ and $2$ and replacing them by $1$. At that point we are left with $1, 3, 4$. We may then erase $3$ and $4$ and replacethem by $1$. The last step would be to erase $1$, $1$ and end up with a single $0$ on the board. [b]p4.[/b] Let $a, b$ be two real numbers so that $a^3 - 6a^2 + 13a = 1$ and $b^3 - 6b^2 + 13b = 19$. Find $a + b$. Prove your answer. [b]p5.[/b] Let $m, n, k$ be three positive integers with $n \ge k$. Suppose $A =\prod_{1\le i\le j\le m} gcd(n + i, k + j) $ is the product of $gcd(n + i, k + j)$, where $i, j$ range over all integers satisfying $1\le i\le j\le m$. Prove that the following fraction is an integer $$\frac{A}{(k + 1) \dots(k + m)}{n \choose k}.$$ Note: $gcd(a, b)$ is the greatest common divisor of $a$ and $b$, and ${n \choose k}= \frac{n!}{k!(n - k)!}$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 JBMO Shortlist, 1

Let $ABC$ be an acute-angled triangle inscribed in a circle $k$. It is given that the tangent from $A$ to the circle meets the line $BC$ at point $P$. Let $M$ be the midpoint of the line segment $AP$ and $R$ be the second intersection point of the circle $k$ with the line $BM$. The line $PR$ meets again the circle $k$ at point $S$ different from $R$. Prove that the lines $AP$ and $CS$ are parallel.

2004 Paraguay Mathematical Olympiad, 4

In a square $ABCD$, $E$ is the midpoint of $BC$ and $F$ is the midpoint of $CD$. Prove that $AF$ and $AE$ divide the diagonal $BD$ in three equal segments.

1999 IMO Shortlist, 2

If a $5 \times n$ rectangle can be tiled using $n$ pieces like those shown in the diagram, prove that $n$ is even. Show that there are more than $2 \cdot 3^{k-1}$ ways to file a fixed $5 \times 2k$ rectangle $(k \geq 3)$ with $2k$ pieces. (symmetric constructions are supposed to be different.)

I Soros Olympiad 1994-95 (Rus + Ukr), 10.5

Tags: geometry , bisects
A circle can be drawn around the quadrilateral $ABCD$. Let straight lines $AB$ and $CD$ intersect at point $M$, and straight lines $BC$ and $AD$ intersect at point $K$. (Points $B$ and $P$ lie on segments $AM$ and $AK$, respectively.) Let $P$ be the projection of point $M$ onto straight line $AK$, $L$ be the projection of point $K$ on the straight line $AM$. Prove that the straight line $LP$ divides the diagonal $BD$ in half.

2021 Estonia Team Selection Test, 2

Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$. Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.

2007 Middle European Mathematical Olympiad, 3

Let $ k$ be a circle and $ k_{1},k_{2},k_{3},k_{4}$ four smaller circles with their centres $ O_{1},O_{2},O_{3},O_{4}$ respectively, on $ k$. For $ i \equal{} 1,2,3,4$ and $ k_{5}\equal{} k_{1}$ the circles $ k_{i}$ and $ k_{i\plus{}1}$ meet at $ A_{i}$ and $ B_{i}$ such that $ A_{i}$ lies on $ k$. The points $ O_{1},A_{1},O_{2},A_{2},O_{3},A_{3},O_{4},A_{4}$ lie in that order on $ k$ and are pairwise different. Prove that $ B_{1}B_{2}B_{3}B_{4}$ is a rectangle.

2014 Purple Comet Problems, 17

Tags: geometry
Right triangle $ABC$ has a right angle at $C$. Point $D$ on side $\overline{AB}$ is the base of the altitude of $\triangle ABC$ from $C$. Point $E$ on side $\overline{BC}$ is the base of the altitude of $\triangle CBD$ from $D$. Given that $\triangle ACD$ has area $48$ and $\triangle CDE$ has area $40$, fi nd the area of $\triangle DBE$.

Denmark (Mohr) - geometry, 2021.4

Given triangle $ABC$ with $|AC| > |BC|$. The point $M$ lies on the angle bisector of angle $C$, and $BM$ is perpendicular to the angle bisector. Prove that the area of triangle AMC is half of the area of triangle $ABC$. [img]https://cdn.artofproblemsolving.com/attachments/4/2/1b541b76ec4a9c052b8866acbfea9a0ce04b56.png[/img]

2013 Macedonia National Olympiad, 5

An arbitrary triangle ABC is given. There are 2 lines, p and q, that are not parallel to each other and they are not perpendicular to the sides of the triangle. The perpendicular lines through points A, B and C to line p we denote with $ p_a, p_b, p_c $ and the perpendicular lines to line q we denote with $ q_a, q_b, q_c $. Let the intersection points of the lines $ p_a, q_a, p_b, q_b, p_c $ and $ q_c $ with $ q_b, p_b, q_c, p_c, q_a $ and $ p_a $ are $ K, L, P, Q, N $ and $ M $. Prove that $ KL, MN $ and $ PQ $ intersect in one point.

2002 Iran MO (2nd round), 3

In a convex quadrilateral $ABCD$ with $\angle ABC = \angle ADC = 135^\circ$, points $M$ and $N$ are taken on the rays $AB$ and $AD$ respectively such that $\angle MCD = \angle NCB = 90^\circ$. The circumcircles of triangles $AMN$ and $ABD$ intersect at $A$ and $K$. Prove that $AK \perp KC.$

2022 Mid-Michigan MO, 10-12

[b]p1.[/b] Consider a triangular grid: nodes of the grid are painted black and white. At a single step you are allowed to change colors of all nodes situated on any straight line (with the slope $0^o$ ,$60^o$, or $120^o$ ) going through the nodes of the grid. Can you transform the combination in the left picture into the one in the right picture in a finite number of steps? [img]https://cdn.artofproblemsolving.com/attachments/3/a/957b199149269ce1d0f66b91a1ac0737cf3f89.png[/img] [b]p2.[/b] Find $x$ satisfying $\sqrt{x\sqrt{x \sqrt{x ...}}} = \sqrt{2022}$ where it is an infinite expression on the left side. [b]p3.[/b] $179$ glasses are placed upside down on a table. You are allowed to do the following moves. An integer number $k$ is fixed. In one move you are allowed to turn any $k$ glasses . (a) Is it possible in a finite number of moves to turn all $179$ glasses into “bottom-down” positions if $k=3$? (b) Is it possible to do it if $k=4$? [b]p4.[/b] An interval of length $1$ is drawn on a paper. Using a compass and a simple ruler construct an interval of length $\sqrt{93}$. [b]p5.[/b] Show that $5^{2n+1} + 3^{n+2} 2^{n-1} $ is divisible by $19$ for any positive integer $n$. [b]p6.[/b] Solve the system $$\begin{cases} \dfrac{xy}{x+y}=1-z \\ \dfrac{yz}{y+z}=2-x \\ \dfrac{xz}{x+z}=2-y \end{cases}$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1994 AMC 12/AHSME, 17

An $8$ by $2\sqrt{2}$ rectangle has the same center as a circle of radius $2$. The area of the region common to both the rectangle and the circle is $ \textbf{(A)}\ 2\pi \qquad\textbf{(B)}\ 2\pi+2 \qquad\textbf{(C)}\ 4\pi-4 \qquad\textbf{(D)}\ 2\pi+4 \qquad\textbf{(E)}\ 4\pi-2 $

1969 Vietnam National Olympiad, 4

Two circles centers $O$ and $O'$, radii $R$ and $R'$, meet at two points. A variable line $L$ meets the circles at $A, C, B, D$ in that order and $\frac{AC}{AD} = \frac{CB}{BD}$. The perpendiculars from $O$ and $O'$ to $L$ have feet $H$ and $H'$. Find the locus of $H$ and $H'$. If $OO'^2 < R^2 + R'^2$, find a point $P$ on $L$ such that $PO + PO'$ has the smallest possible value. Show that this value does not depend on the position of $L$. Comment on the case $OO'^2 > R^2 + R'^2$.