This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

May Olympiad L1 - geometry, 2008.4

Let $ABF$ be a right-angled triangle with $\angle AFB = 90$, a square $ABCD$ is externally to the triangle. If $FA = 6$, $FB = 8$ and $E$ is the circumcenter of the square $ABCD$, determine the value of $EF$

2003 Greece Junior Math Olympiad, 3

Let $ABC$ be an isosceles triangle ($AB=AC$). The altitude $AH$ and the perpendiculare bisector $(e)$ of side $AB$ intersect at point $M$ . The perpendicular on line $(e)$ passing through $M$ intersects $BC$ at point $D$. If the circumscribed circle of the triangle $BMD$ intersects line $(e)$ at point $S$ , the prove that: a) $BS // AM$ . b) quadrilateral $AMBS$ is rhombus.

2017 Auckland Mathematical Olympiad, 1

A $6$ meter ladder rests against a vertical wall. The midpoint of the ladder is twice as far from the ground as it is from the wall. At what height on the wall does the ladder reach?

Novosibirsk Oral Geo Oly IX, 2017.2

Tags: angle , geometry
You are given a convex quadrilateral $ABCD$. It is known that $\angle CAD = \angle DBA = 40^o$, $\angle CAB = 60^o$, $\angle CBD = 20^o$. Find the angle $\angle CDB $.

2005 Sharygin Geometry Olympiad, 14

Let $P$ be an arbitrary point inside the triangle $ABC$. Let $A_1, B_1$ and $C_1$ denote the intersection points of the straight lines $AP, BP$ and $CP$, respectively, with the sides $BC, CA$ and $AB$. We order the areas of the triangles $AB_1C_1,A_1BC_1,A_1B_1C$. Denote the smaller by $S_1$, the middle by $S_2$, and the larger by $S_3$. Prove that $\sqrt{S_1 S_2} \le S \le \sqrt{S_2 S_3}$ ,where $S$ is the area of the triangle $A_1B_1S_1$.

1991 Federal Competition For Advanced Students, 4

Tags: geometry
Let $ AB$ be a chord of a circle $ k$ of radius $ r$, with $ AB\equal{}c$. $ (a)$ Construct the triangle $ ABC$ with $ C$ on $ k$ in which a median from $ A$ or $ B$ is of a given length $ d.$ $ (b)$ For which $ c$ and $ d$ is this triangle unique?

2021 Malaysia IMONST 1, Juniors

IMONST = [b]I[/b]nternational [b]M[/b]athematical [b]O[/b]lympiad [b]N[/b]ational [b]S[/b]election [b]T[/b]est Malaysia 2021 Round 1 Juniors Time: 2.5 hours [hide=Rules] $\bullet$ For each problem you have to submit the answer only. The answer to each problem is a non-negative integer. $\bullet$ No mark is deducted for a wrong answer. $\bullet$ The maximum number of points is (1 + 2 + 3 + 4) x 5 = 50 points.[/hide] [b]Part A[/b] (1 point each) p1. Adam draws $7$ circles on a paper, with radii $ 1$ cm, $2$ cm, $3$ cm, $4$ cm, $5$ cm, $6$ cm, and $7$ cm. The circles do not intersect each other. He colors some circles completely red, and the rest of the circles completely blue. What is the minimum possible difference (in cm$^2$) between the total area of the red circles and the total area of the blue circles? p2. The number $2021$ has a special property that the sum of any two neighboring digits in the number is a prime number ($2 + 0 = 2$, $0 + 2 = 2$, and $2 + 1 = 3$ are all prime numbers). Among numbers from $2021$ to $2041$, how many of them have this property? p3. Clarissa opens a pet shop that sells three types of pets: goldshes, hamsters, and parrots. The pets inside the shop together have a total of $14$ wings, $24$ heads, and $62$ legs. How many goldshes are there inside Clarissa's shop? p4. A positive integer $n$ is called special if $n$ is divisible by $4$, $n+1$ is divisible by $5$, and $n + 2$ is divisible by $6$. How many special integers smaller than $1000$ are there? p5. Suppose that this decade begins on $ 1$ January $2020$ (which is a Wednesday) and the next decade begins on $ 1$ January $2030$. How many Wednesdays are there in this decade? [b]Part B[/b] (2 points each) p6. Given an isosceles triangle $ABC$ with $AB = AC$. Let D be a point on $AB$ such that $CD$ is the bisector of $\angle ACB$. If $CB = CD$, what is $\angle ADC$, in degrees? p7. Determine the number of isosceles triangles with the following properties: all the sides have integer lengths (in cm), and the longest side has length $21$ cm. p8. Haz marks $k$ points on the circumference of a circle. He connects every point to every other point with straight lines. If there are $210$ lines formed, what is $k$? p9. What is the smallest positive multiple of $24$ that can be written using digits $4$ and $5$ only? p10. In a mathematical competition, there are $2021$ participants. Gold, silver, and bronze medals are awarded to the winners as follows: (i) the number of silver medals is at least twice the number of gold medals, (ii) the number of bronze medals is at least twice the number of silver medals, (iii) the number of all medals is not more than $40\%$ of the number of participants. The competition director wants to maximize the number of gold medals to be awarded based on the given conditions. In this case, what is the maximum number of bronze medals that can be awarded? [b]Part C[/b] (3 points each) p11. Dinesh has several squares and regular pentagons, all with side length $ 1$. He wants to arrange the shapes alternately to form a closed loop (see diagram). How many pentagons would Dinesh need to do so? [img]https://cdn.artofproblemsolving.com/attachments/8/9/6345d7150298fe26cfcfba554656804ed25a6d.jpg [/img] p12. If $x +\frac{1}{x} = 5$, what is the value of $x^3 +\frac{1}{x^3} $ ? p13. There are $10$ girls in a class, all with different heights. They want to form a queue so that no girl stands directly between two girls shorter than her. How many ways are there to form the queue? p14. The two diagonals of a rhombus have lengths with ratio $3 : 4$ and sum $56$. What is the perimeter of the rhombus? p15. How many integers $n$ (with $1 \le n \le 2021$) have the property that $8n + 1$ is a perfect square? [b]Part D[/b] (4 points each) p16. Given a segment of a circle, consisting of a straight edge and an arc. The length of the straight edge is $24$. The length between the midpoint of the straight edge and the midpoint of the arc is $6$. Find the radius of the circle. p17. Sofia has forgotten the passcode of her phone. She only remembers that it has four digits and that the product of its digits is $18$. How many passcodes satisfy these conditions? p18. A tree grows in the following manner. On the first day, one branch grows out of the ground. On the second day, a leaf grows on the branch and the branch tip splits up into two new branches. On each subsequent day, a new leaf grows on every existing branch, and each branch tip splits up into two new branches. How many leaves does the tree have at the end of the tenth day? p19. Find the sum of (decimal) digits of the number $(10^{2021} + 2021)^2$? p20. Determine the number of integer solutions $(x, y, z)$, with $0 \le x, y, z \le 100$, for the equation$$(x - y)^2 + (y + z)^2 = (x + y)^2 + (y - z)^2.$$

2011 Saudi Arabia BMO TST, 3

In an acute triangle $ABC$ the angle bisector $AL$, $L \in BC$, intersects its circumcircle at $N$. Let $K$ and $M$ be the projections of $L$ onto sides $AB$ and $AC$. Prove that triangle $ABC$ and quadrilateral $A K N M$ have equal areas.

2008 AIME Problems, 2

Square $ AIME$ has sides of length $ 10$ units. Isosceles triangle $ GEM$ has base $ EM$, and the area common to triangle $ GEM$ and square $ AIME$ is $ 80$ square units. Find the length of the altitude to $ EM$ in $ \triangle GEM$.

2022/2023 Tournament of Towns, P6

The midpoints of all heights of a certain tetrahedron lie on its inscribed sphere. Is this tetrahedron necessarily regular then?

2006 IMO Shortlist, 5

In triangle $ABC$, let $J$ be the center of the excircle tangent to side $BC$ at $A_{1}$ and to the extensions of the sides $AC$ and $AB$ at $B_{1}$ and $C_{1}$ respectively. Suppose that the lines $A_{1}B_{1}$ and $AB$ are perpendicular and intersect at $D$. Let $E$ be the foot of the perpendicular from $C_{1}$ to line $DJ$. Determine the angles $\angle{BEA_{1}}$ and $\angle{AEB_{1}}$. [i]Proposed by Dimitris Kontogiannis, Greece[/i]

2017 IOM, 1

Let $ABCD$ be a parallelogram in which angle at $B$ is obtuse and $AD>AB$. Points $K$ and $L$ on $AC$ such that $\angle ADL=\angle KBA$(the points $A, K, C, L$ are all different, with $K$ between $A$ and $L$). The line $BK$ intersects the circumcircle $\omega$ of $ABC$ at points $B$ and $E$, and the line $EL$ intersects $\omega$ at points $E$ and $F$. Prove that $BF||AC$.

2021 Princeton University Math Competition, B3

Tags: geometry
Let $\vartriangle ABC$ be a triangle, and let $C_0, B_0$ be the feet of perpendiculars from $C$ and $B$ onto $AB$ and $AC$ respectively. Let $\Gamma$ be the circumcircle of $\vartriangle ABC$. Let E be a point on the $\Gamma$ such that $AE \perp BC$. Let $M$ be the midpoint of $BC$ and let $G$ be the second intersection of EM and $\Gamma$. Let $T$ be a point on $\Gamma$ such that $T G$ is parallel to $BC$. Prove that $T, A, B_0, C_0$ are concyclic.

2003 India National Olympiad, 1

Let $P$ be an interior point of an acute-angled triangle $ABC$. The line $BP$ meets the line $AC$ at $E$, and the line $CP$ meets the line $AB$ at $F$. The lines $AP$ and $EF$ intersect each other at $D$. Let $K$ be the foot of the perpendicular from the point $D$ to the line $BC$. Show that the line $KD$ bisects the angle $\angle EKF$.

KoMaL A Problems 2018/2019, A. 742

Tags: geometry
Convex quadrilateral $ABCD$ is inscribed in circle $\Omega$. Its sides $AD$ and $BC$ intersect at point $E$. Let $M$ and $N$ be the midpoints of the circle arcs $AB$ and $CD$ not containing the other vertices, and let $I$, $J$, $K$, $L$ denote the incenters of triangles $ABD$, $ABC$, $BCD$, $CDA$, respectively. Suppose $\Omega$ intersects circles $IJM$ and $KLN$ for the second time at points $U \neq M$ and $V \neq N$. Show that the points $E$, $U$, and $V$ are collinear.

2010 India IMO Training Camp, 7

Let $ABCD$ be a cyclic quadrilaterla and let $E$ be the point of intersection of its diagonals $AC$ and $BD$. Suppose $AD$ and $BC$ meet in $F$. Let the midpoints of $AB$ and $CD$ be $G$ and $H$ respectively. If $\Gamma $ is the circumcircle of triangle $EGH$, prove that $FE$ is tangent to $\Gamma $.

2017 Yasinsky Geometry Olympiad, 6

Given a trapezoid $ABCD$ with bases $BC$ and $AD$, with $AD=2 BC$. Let $M$ be the midpoint of $AD, E$ be the intersection point of the sides $AB$ and $CD$, $O$ be the intersection point of $BM$ and $AC, N$ be the intersection point of $EO$ and $BC$. In what ratio, point $N$ divides the segment $BC$?

2012 Sharygin Geometry Olympiad, 8

Tags: incenter , geometry
Let $AH$ be an altitude of an acute-angled triangle $ABC$. Points $K$ and $L$ are the projections of $H$ onto sides $AB$ and $AC$. The circumcircle of $ABC$ meets line $KL$ at points $P$ and $Q$, and meets line $AH$ at points $A$ and $T$. Prove that $H$ is the incenter of triangle $PQT$. (M.Plotnikov)

2022 Durer Math Competition Finals, 4

$ABCD$ is a cyclic quadrilateral whose diagonals are perpendicular to each other. Let $O$ denote the centre of its circumcircle and $E$ the intersection of the diagonals. $J$ and $K$ denote the perpendicular projections of $E$ on the sides $AB$ and $BC$ . Let $F , G$ and $H$ be the midpoint line segments. Show that lines $GJ$ , $FB$ and $HK$ either pass through the same point or are parallel to each other.

2003 All-Russian Olympiad, 2

The diagonals of a cyclic quadrilateral $ABCD$ meet at $O$. Let $S_1, S_2$ be the circumcircles of triangles $ABO$ and $CDO$ respectively, and $O,K$ their intersection points. The lines through $O$ parallel to $AB$ and $CD$ meet $S_1$ and $S_2$ again at $L$ and $M$, respectively. Points $P$ and $Q$ on segments $OL$ and $OM$ respectively are taken such that $OP : PL = MQ : QO$. Prove that $O,K, P,Q$ lie on a circle.

2018 Sharygin Geometry Olympiad, 4

Tags: geometry
Let $ABCD$ be a cyclic quadrilateral. A point $P$ moves along the arc $AD$ which does not contain $B$ and $C$. A fixed line $l$, perpendicular to $BC$, meets the rays $BP$, $CP$ at points $B_0$, $C_0$ respectively. Prove that the tangent at $P$ to the circumcircle of triangle $PB_0C_0$ passes through some fixed point.

2005 Iran MO (2nd round), 2

In triangle $ABC$, $\angle A=60^{\circ}$. The point $D$ changes on the segment $BC$. Let $O_1,O_2$ be the circumcenters of the triangles $\Delta ABD,\Delta ACD$, respectively. Let $M$ be the meet point of $BO_1,CO_2$ and let $N$ be the circumcenter of $\Delta DO_1O_2$. Prove that, by changing $D$ on $BC$, the line $MN$ passes through a constant point.

2023 Belarusian National Olympiad, 11.8

Tags: geometry , algebra
Positive integer $n>2$ is called [i]good[/i] if there exist $n$ distinct points on plane($X_1, \ldots, X_n$), such that for all $1 \leq i \leq n$ vectors $X_iX_1, \ldots, X_iX_n$ can be partitioned into two groups with equal sums. Find all [i]good[/i] numbers

2014 IMO Shortlist, G2

Tags: geometry
Let $ABC$ be a triangle. The points $K, L,$ and $M$ lie on the segments $BC, CA,$ and $AB,$ respectively, such that the lines $AK, BL,$ and $CM$ intersect in a common point. Prove that it is possible to choose two of the triangles $ALM, BMK,$ and $CKL$ whose inradii sum up to at least the inradius of the triangle $ABC$. [i]Proposed by Estonia[/i]

2022 Novosibirsk Oral Olympiad in Geometry, 7

Altitudes $AA_1$ and $CC_1$ of an acute-angled triangle $ABC$ intersect at point $H$. A straight line passing through point $H$ parallel to line $A_1C_1$ intersects the circumscribed circles of triangles $AHC_1$ and $CHA_1$ at points $X$ and $Y$, respectively. Prove that points $X$ and $Y$ are equidistant from the midpoint of segment $BH$.