This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 250

1994 Hungary-Israel Binational, 4

An [i]$ n\minus{}m$ society[/i] is a group of $ n$ girls and $ m$ boys. Prove that there exists numbers $ n_0$ and $ m_0$ such that every [i]$ n_0\minus{}m_0$ society[/i] contains a subgroup of five boys and five girls with the following property: either all of the boys know all of the girls or none of the boys knows none of the girls.

2011 Croatia Team Selection Test, 2

There were finitely many persons at a party among whom some were friends. Among any $4$ of them there were either $3$ who were all friends among each other or $3$ who weren't friend with each other. Prove that you can separate all the people at the party in two groups in such a way that in the first group everyone is friends with each other and that all the people in the second group are not friends to anyone else in second group. (Friendship is a mutual relation).

PEN R Problems, 3

Prove no three lattice points in the plane form an equilateral triangle.

1996 Romania National Olympiad, 1

Prove that a group $G$ in which exactly two elements other than the identity commute with each other is isomorphic to $\mathbb{Z}/3 \mathbb{Z}$ or $S_3.$

1969 Putnam, B2

Tags: group theory
Show that a finite group can not be the union of two of its proper subgroups. Does the statement remain true if "two' is replaced by "three'?

2008 IMC, 4

We say a triple of real numbers $ (a_1,a_2,a_3)$ is [b]better[/b] than another triple $ (b_1,b_2,b_3)$ when exactly two out of the three following inequalities hold: $ a_1 > b_1$, $ a_2 > b_2$, $ a_3 > b_3$. We call a triple of real numbers [b]special[/b] when they are nonnegative and their sum is $ 1$. For which natural numbers $ n$ does there exist a collection $ S$ of special triples, with $ |S| \equal{} n$, such that any special triple is bettered by at least one element of $ S$?

2010 Gheorghe Vranceanu, 1

Tags: group theory
Let be a semigroup with the property that for any two elements of it $ a,b, $ there is another element $ c $ such that $ axa=b. $ Prove that it's a group.

2009 Indonesia TST, 3

Let $ S\equal{}\{1,2,\ldots,n\}$. Let $ A$ be a subset of $ S$ such that for $ x,y\in A$, we have $ x\plus{}y\in A$ or $ x\plus{}y\minus{}n\in A$. Show that the number of elements of $ A$ divides $ n$.

2008 Romania National Olympiad, 4

Let $ \mathcal G$ be the set of all finite groups with at least two elements. a) Prove that if $ G\in \mathcal G$, then the number of morphisms $ f: G\to G$ is at most $ \sqrt [p]{n^n}$, where $ p$ is the largest prime divisor of $ n$, and $ n$ is the number of elements in $ G$. b) Find all the groups in $ \mathcal G$ for which the inequality at point a) is an equality.

1985 Miklós Schweitzer, 6

Determine all finite groups $G$ that have an automorphism $f$ such that $H\not\subseteq f(H)$ for all proper subgroups $H$ of $G$. [B. Kovacs]

2010 IMC, 3

Denote by $S_n$ the group of permutations of the sequence $(1,2,\dots,n).$ Suppose that $G$ is a subgroup of $S_n,$ such that for every $\pi\in G\setminus\{e\}$ there exists a unique $k\in \{1,2,\dots,n\}$ for which $\pi(k)=k.$ (Here $e$ is the unit element of the group $S_n.$) Show that this $k$ is the same for all $\pi \in G\setminus \{e\}.$

1989 IMO Longlists, 82

Let $ A$ be a set of positive integers such that no positive integer greater than 1 divides all the elements of $ A.$ Prove that any sufficiently large positive integer can be written as a sum of elements of $ A.$ (Elements may occur several times in the sum.)

2008 IberoAmerican Olympiad For University Students, 7

Let $A$ be an abelian additive group such that all nonzero elements have infinite order and for each prime number $p$ we have the inequality $|A/pA|\leq p$, where $pA = \{pa |a \in A\}$, $pa = a+a+\cdots+a$ (where the sum has $p$ summands) and $|A/pA|$ is the order of the quotient group $A/pA$ (the index of the subgroup $pA$). Prove that each subgroup of $A$ of finite index is isomorphic to $A$.

2019 Romania National Olympiad, 2

Let $n \geq 4$ be an even natural number and $G$ be a subgroup of $GL_2(\mathbb{C})$ with $|G| = n.$ Prove that there exists $H \leq G$ such that $\{ I_2 \} \neq H$ and $H \neq G$ such that $XYX^{-1} \in H, \: \forall X \in G$ and $\forall Y \in H$

2002 District Olympiad, 1

Let $ A $ be a ring, $ a\in A, $ and let $ n,k\ge 2 $ be two natural numbers such that $ n\vdots\text{char} (A) $ and $ 1+a=a^k. $ Show that the following propositions are true: [b]a)[/b] $ \forall s\in\mathbb{N}\quad \exists p_0,p_1,\ldots ,p_{k-1}\in\mathbb{Z}_{\ge 0}\quad a^s=\sum_{i=0}^{k-1} p_ia^{i} . $ [b]b)[/b] $ \text{ord} (a)\neq\infty . $

1980 Miklós Schweitzer, 5

Let $ G$ be a transitive subgroup of the symmetric group $ S_{25}$ different from $ S_{25}$ and $ A_{25}$. Prove that the order of $ G$ is not divisible by $ 23$. [i]J. Pelikan[/i]

2006 Iran MO (3rd Round), 2

$n$ is a natural number that $\frac{x^{n}+1}{x+1}$ is irreducible over $\mathbb Z_{2}[x]$. Consider a vector in $\mathbb Z_{2}^{n}$ that it has odd number of $1$'s (as entries) and at least one of its entries are $0$. Prove that these vector and its translations are a basis for $\mathbb Z_{2}^{n}$

1987 Traian Lălescu, 1.1

Describe all groups $ G $ which have the property that: $$ (\forall H\le G)(\forall x,y\in G)(xy\in H\implies (x,y\in H\vee xy=1)) $$

2012 Bogdan Stan, 1

Tags: group theory
Find the number of pairs of elements, from a group of order $ 2011, $ such that the square of the first element of the pair is equal to the cube of the second element. [i]Teodor Radu[/i]

1977 Spain Mathematical Olympiad, 2

Prove that all square matrices of the form (with $a, b \in R$), $$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$ form a commutative field $K$ when considering the operations of addition and matrix product. Prove also that if $A \in K$ is an element of said field, there exist two matrices of $K$ such that the square of each is equal to $A$.

2009 IberoAmerican Olympiad For University Students, 7

Let $G$ be a group such that every subgroup of $G$ is subnormal. Suppose that there exists $N$ normal subgroup of $G$ such that $Z(N)$ is nontrivial and $G/N$ is cyclic. Prove that $Z(G)$ is nontrivial. ($Z(G)$ denotes the center of $G$). [b]Note[/b]: A subgroup $H$ of $G$ is subnormal if there exist subgroups $H_1,H_2,\ldots,H_m=G$ of $G$ such that $H\lhd H_1\lhd H_2 \lhd \ldots \lhd H_m= G$ ($\lhd$ denotes normal subgroup).

2005 Gheorghe Vranceanu, 1

For a natural number $ n\ge 2, $ prove that the $ \text{n-ary} $ direct product of the group of order $ 2 $ is abelian and isomorphic with the group of the power set of a set under symmetric difference.

2021 Science ON grade XII, 4

Consider a group $G$ with at least $2$ elements and the property that each nontrivial element has infinite order. Let $H$ be a cyclic subgroup of $G$ such that the set $\{xH\mid x\in G\}$ has $2$ elements. \\ $\textbf{(a)}$ Prove that $G$ is cyclic. \\ $\textbf{(b)}$ Does the conclusion from $\textbf{(a)}$ stand true if $G$ contains nontrivial elements of finite order?

2005 District Olympiad, 4

Let $(A,+,\cdot)$ be a finite unit ring, with $n\geq 3$ elements in which there exist [b]exactly[/b] $\dfrac {n+1}2$ perfect squares (e.g. a number $b\in A$ is called a perfect square if and only if there exists an $a\in A$ such that $b=a^2$). Prove that a) $1+1$ is invertible; b) $(A,+,\cdot)$ is a field. [i]Proposed by Marian Andronache[/i]

1994 USAMO, 2

The sides of a 99-gon are initially colored so that consecutive sides are red, blue, red, blue, $\,\ldots, \,$ red, blue, yellow. We make a sequence of modifications in the coloring, changing the color of one side at a time to one of the three given colors (red, blue, yellow), under the constraint that no two adjacent sides may be the same color. By making a sequence of such modifications, is it possible to arrive at the coloring in which consecutive sides are red, blue, red, blue, red, blue, $\, \ldots, \,$ red, yellow, blue?