This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 200

2010 Contests, 4

The two circles $\Gamma_1$ and $\Gamma_2$ intersect at $P$ and $Q$. The common tangent that's on the same side as $P$, intersects the circles at $A$ and $B$,respectively. Let $C$ be the second intersection with $\Gamma_2$ of the tangent to $\Gamma_1$ at $P$, and let $D$ be the second intersection with $\Gamma_1$ of the tangent to $\Gamma_2$ at $Q$. Let $E$ be the intersection of $AP$ and $BC$, and let $F$ be the intersection of $BP$ and $AD$. Let $M$ be the image of $P$ under point reflection with respect to the midpoint of $AB$. Prove that $AMBEQF$ is a cyclic hexagon.

Kyiv City MO 1984-93 - geometry, 1984.10.5

The vertices of a regular hexagon $A_1,A_2,...,A_6$ lie respectively on the sides $B_1B_2$, $B_2B_3$, $B_3B_4$, $B_4B_5$, $B_5B_6$, $B_6B_1$ of a convex hexagon $B_1B_2B_3B_4B_5B_6$. Prove that $$S_{B_1B_2B_3B_4B_5B_6} \le \frac32 S_{A_1A_2A_3A_4A_5A_6}.$$

1998 Moldova Team Selection Test, 9

A hexagon is inscribed in a circle of radius $r$. Two of the sides of the hexagon have length $1$, two have length $2$ and two have length $3$. Show that $r$ satisfies the equation $2r^3 - 7r - 3 = 0$.

2016 Sharygin Geometry Olympiad, P19

Let $ABCDEF$ be a regular hexagon. Points $P$ and $Q$ on tangents to its circumcircle at $A$ and $D$ respectively are such that $PQ$ touches the minor arc $EF$ of this circle. Find the angle between $PB$ and $QC$.

1935 Moscow Mathematical Olympiad, 009

The height of a truncated cone is equal to the radius of its base. The perimeter of a regular hexagon circumscribing its top is equal to the perimeter of an equilateral triangle inscribed in its base. Find the angle $\phi$ between the cone’s generating line and its base.

2011 Abels Math Contest (Norwegian MO), 2b

The diagonals $AD, BE$, and $CF$ of a convex hexagon $ABCDEF$ intersect in a common point. Show that $a(ABE) a(CDA) a(EFC) = a(BCE) a(DEA) a(FAC)$, where $a(KLM)$ is the area of the triangle $KLM$. [img]https://cdn.artofproblemsolving.com/attachments/0/a/bcbbddedde159150fe3c26b1f0a2bfc322aa1a.png[/img]

1982 IMO Shortlist, 5

The diagonals $AC$ and $CE$ of the regular hexagon $ABCDEF$ are divided by inner points $M$ and $N$ respectively, so that \[ {AM\over AC}={CN\over CE}=r. \] Determine $r$ if $B,M$ and $N$ are collinear.

2000 Denmark MO - Mohr Contest, 2

Three identical spheres fit into a glass with rectangular sides and bottom and top in the form of regular hexagons such that every sphere touches every side of the glass. The glass has volume $108$ cm$^3$. What is the sidelength of the bottom? [img]https://1.bp.blogspot.com/-hBkYrORoBHk/XzcDt7B83AI/AAAAAAAAMXs/P5PGKTlNA7AvxkxMqG-qxqDVc9v9cU0VACLcBGAsYHQ/s0/2000%2BMohr%2Bp2.png[/img]

2015 Peru MO (ONEM), 2

Let $ABCDEF$ be a convex hexagon. The diagonal $AC$ is cut by $BF$ and $BD$ at points $P$ and $Q$, respectively. The diagonal $CE$ is cut by $DB$ and $DF$ at points $R$ and $S$, respectively. The diagonal $EA$ is cut by $FD$ and $FB$ at points $T$ and $U$, respectively. It is known that each of the seven triangles $APB, PBQ, QBC, CRD, DRS, DSE$ and $AUF$ has area $1$. Find the area of the hexagon $ABCDEF$.

2004 Estonia Team Selection Test, 6

Call a convex polyhedron a [i]footballoid [/i] if it has the following properties. (1) Any face is either a regular pentagon or a regular hexagon. (2) All neighbours of a pentagonal face are hexagonal (a [i]neighbour [/i] of a face is a face that has a common edge with it). Find all possibilities for the number of pentagonal and hexagonal faces of a footballoid.

2003 German National Olympiad, 4

From the midpoints of the sides of an acute-angled triangle, perpendiculars are drawn to the adjacent sides. The resulting six straight lines bound the hexagon. Prove that its area is half the area of the original triangle.

2021 International Zhautykov Olympiad, 2

Tags: geometry , hexagon
In a convex cyclic hexagon $ABCDEF$, $BC=EF$ and $CD=AF$. Diagonals $AC$ and $BF$ intersect at point $Q,$ and diagonals $EC$ and $DF$ intersect at point $P.$ Points $R$ and $S$ are marked on the segments $DF$ and $BF$ respectively so that $FR=PD$ and $BQ=FS.$ [b]The segments[/b] $RQ$ and $PS$ intersect at point $T.$ Prove that the line $TC$ bisects the diagonal $DB$.

2015 Singapore Junior Math Olympiad, 2

In a convex hexagon $ABCDEF, AB$ is parallel to $DE, BC$ is parallel to $EF$ and $CD$ is parallel to $FA$. Prove that the triangles $ACE$ and $BDF$ have the same area.

1995 IMO, 5

Let $ ABCDEF$ be a convex hexagon with $ AB \equal{} BC \equal{} CD$ and $ DE \equal{} EF \equal{} FA$, such that $ \angle BCD \equal{} \angle EFA \equal{} \frac {\pi}{3}$. Suppose $ G$ and $ H$ are points in the interior of the hexagon such that $ \angle AGB \equal{} \angle DHE \equal{} \frac {2\pi}{3}$. Prove that $ AG \plus{} GB \plus{} GH \plus{} DH \plus{} HE \geq CF$.

1983 Brazil National Olympiad, 2

An equilateral triangle $ABC$ has side a. A square is constructed on the outside of each side of the triangle. A right regular pyramid with sloping side $a$ is placed on each square. These pyramids are rotated about the sides of the triangle so that the apex of each pyramid comes to a common point above the triangle. Show that when this has been done, the other vertices of the bases of the pyramids (apart from the vertices of the triangle) form a regular hexagon.

1964 All Russian Mathematical Olympiad, 049

A honeybug crawls along the honeycombs with the unite length of their hexagons. He has moved from the node $A$ to the node $B$ along the shortest possible trajectory. Prove that the half of his way he moved in one direction.

1996 IMO Shortlist, 5

Let $ ABCDEF$ be a convex hexagon such that $ AB$ is parallel to $ DE$, $ BC$ is parallel to $ EF$, and $ CD$ is parallel to $ FA$. Let $ R_{A},R_{C},R_{E}$ denote the circumradii of triangles $ FAB,BCD,DEF$, respectively, and let $ P$ denote the perimeter of the hexagon. Prove that \[ R_{A} \plus{} R_{C} \plus{} R_{E}\geq \frac {P}{2}. \]

1966 Polish MO Finals, 5

Each of the diagonals $AD$, $BE$, $CF$ of a convex hexagon $ABCDEF$ bisects the area of the hexagon. Prove that these three diagonals pass through the same point.

V Soros Olympiad 1998 - 99 (Russia), 10.9

Six cities are located at the vertices of a convex hexagon, all angles of which are equal. Three sides of this hexagon have length $a$, and the remaining three have length $b$ ($a \le b$). It is necessary to connect these cities with a network of roads so that from each city you can drive to any other (possibly through other cities). Find the shortest length of such a road network.

1974 All Soviet Union Mathematical Olympiad, 191

a) Each of the side of the convex hexagon is longer than $1$. Does it necessary have a diagonal longer than $2$? b) Each of the main diagonals of the convex hexagon is longer than $2$. Does it necessary have a side longer than $1$?

2020 Puerto Rico Team Selection Test, 1

We have $10,000$ identical equilateral triangles. Consider the largest regular hexagon that can be formed with these triangles without overlapping. How many triangles will not be used?

2014 Israel National Olympiad, 3

Let $ABCDEF$ be a convex hexagon. In the hexagon there is a point $K$, such that $ABCK,DEFK$ are both parallelograms. Prove that the three lines connecting $A,B,C$ to the midpoints of segments $CE,DF,EA$ meet at one point.

2010 Contests, 3

On a circular billiard table a ball rebounds from the rails as if the rail was the tangent to the circle at the point of impact. A regular hexagon with its vertices on the circle is drawn on a circular billiard table. A (point-shaped) ball is placed somewhere on the circumference of the hexagon, but not on one of its edges. Describe a periodical track of this ball with exactly four points at the rails. With how many different directions of impact can the ball be brought onto such a track?

Kvant 2022, M2692

Tags: geometry , porism , hexagon
In the circle $\Omega$ the hexagon $ABCDEF$ is inscribed. It is known that the point $D{}$ divides the arc $BC$ in half, and the triangles $ABC$ and $DEF$ have a common inscribed circle. The line $BC$ intersects segments $DF$ and $DE$ at points $X$ and $Y$ and the line $EF$ intersects segments $AB$ and $AC$ at points $Z$ and $T$ respectively. Prove that the points $X, Y, T$ and $Z$ lie on the same circle. [i]Proposed by D. Brodsky[/i]

Ukrainian TYM Qualifying - geometry, X.13

A paper square is bent along the line $\ell$, which passes through its center, so that a non-convex hexagon is formed. Investigate the question of the circle of largest radius that can be placed in such a hexagon.