Found problems: 393
2012 Romanian Master of Mathematics, 6
Let $ABC$ be a triangle and let $I$ and $O$ denote its incentre and circumcentre respectively. Let $\omega_A$ be the circle through $B$ and $C$ which is tangent to the incircle of the triangle $ABC$; the circles $\omega_B$ and $\omega_C$ are defined similarly. The circles $\omega_B$ and $\omega_C$ meet at a point $A'$ distinct from $A$; the points $B'$ and $C'$ are defined similarly. Prove that the lines $AA',BB'$ and $CC'$ are concurrent at a point on the line $IO$.
[i](Russia) Fedor Ivlev[/i]
2009 India IMO Training Camp, 1
Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$,
$ r$ being inradius.
2004 Romania Team Selection Test, 16
Three circles $\mathcal{K}_1$, $\mathcal{K}_2$, $\mathcal{K}_3$ of radii $R_1,R_2,R_3$ respectively, pass through the point $O$ and intersect two by two in $A,B,C$. The point $O$ lies inside the triangle $ABC$.
Let $A_1,B_1,C_1$ be the intersection points of the lines $AO,BO,CO$ with the sides $BC,CA,AB$ of the triangle $ABC$. Let $ \alpha = \frac {OA_1}{AA_1} $, $ \beta= \frac {OB_1}{BB_1} $ and $ \gamma = \frac {OC_1}{CC_1} $ and let $R$ be the circumradius of the triangle $ABC$. Prove that
\[ \alpha R_1 + \beta R_2 + \gamma R_3 \geq R. \]
2007 IMO, 2
Consider five points $ A$, $ B$, $ C$, $ D$ and $ E$ such that $ ABCD$ is a parallelogram and $ BCED$ is a cyclic quadrilateral. Let $ \ell$ be a line passing through $ A$. Suppose that $ \ell$ intersects the interior of the segment $ DC$ at $ F$ and intersects line $ BC$ at $ G$. Suppose also that $ EF \equal{} EG \equal{} EC$. Prove that $ \ell$ is the bisector of angle $ DAB$.
[i]Author: Charles Leytem, Luxembourg[/i]
2009 Turkey MO (2nd round), 2
Let $\Gamma$ be the circumcircle of a triangle $ABC,$ and let $D$ and $E$ be two points different from the vertices on the sides $AB$ and $AC,$ respectively. Let $A'$ be the second point where $\Gamma$ intersects the bisector of the angle $BAC,$ and let $P$ and $Q$ be the second points where $\Gamma$ intersects the lines $A'D$ and $A'E,$ respectively. Let $R$ and $S$ be the second points of intersection of the lines $AA'$ and the circumcircles of the triangles $APD$ and $AQE,$ respectively.
Show that the lines $DS, \: ER$ and the tangent line to $\Gamma$ through $A$ are concurrent.
2017 Sharygin Geometry Olympiad, 8
Let $AK$ and $BL$ be the altitudes of an acute-angled triangle $ABC$, and let $\omega$ be the excircle of $ABC$ touching side $AB$. The common internal tangents to circles $CKL$ and $\omega$ meet $AB$ at points $P$ and $Q$. Prove that $AP =BQ$.
[i]Proposed by I.Frolov[/i]
2024 Bangladesh Mathematical Olympiad, P5
Let $I$ be the incenter of $\triangle ABC$ and $P$ be a point such that $PI$ is perpendicular to $BC$ and $PA$ is parallel to $BC$. Let the line parallel to $BC$, which is tangent to the incircle of $\triangle ABC$, intersect $AB$ and $AC$ at points $Q$ and $R$ respectively. Prove that $\angle BPQ = \angle CPR$.
2008 Bulgaria Team Selection Test, 2
In the triangle $ABC$, $AM$ is median, $M \in BC$, $BB_{1}$ and $CC_{1}$ are altitudes, $C_{1} \in AB$, $B_{1} \in AC$. The line through $A$ which is perpendicular to $AM$ cuts the lines $BB_{1}$ and $CC_{1}$ at points $E$ and $F$, respectively. Let $k$ be the circumcircle of $\triangle EFM$. Suppose also that $k_{1}$ and $k_{2}$ are circles touching both $EF$ and the arc $EF$ of $k$ which does not contain $M$. If $P$ and $Q$ are the points at which $k_{1}$ intersects $k_{2}$, prove that $P$, $Q$, and $M$ are collinear.
Russian TST 2014, P2
The polygon $M{}$ is bicentric. The polygon $P{}$ has vertices at the points of contact of the sides of $M{}$ with the inscribed circle. The polygon $Q{}$ is formed by the external bisectors of the angles of $M{}.$ Prove that $P{}$ and $Q{}$ are homothetic.
1997 China Team Selection Test, 1
Given a real number $\lambda > 1$, let $P$ be a point on the arc $BAC$ of the circumcircle of $\bigtriangleup ABC$. Extend $BP$ and $CP$ to $U$ and $V$ respectively such that $BU = \lambda BA$, $CV = \lambda CA$. Then extend $UV$ to $Q$ such that $UQ = \lambda UV$. Find the locus of point $Q$.
2013 China Team Selection Test, 2
Let $P$ be a given point inside the triangle $ABC$. Suppose $L,M,N$ are the midpoints of $BC, CA, AB$ respectively and \[PL: PM: PN= BC: CA: AB.\] The extensions of $AP, BP, CP$ meet the circumcircle of $ABC$ at $D,E,F$ respectively. Prove that the circumcentres of $APF, APE, BPF, BPD, CPD, CPE$ are concyclic.
2007 Canada National Olympiad, 5
Let the incircle of triangle $ ABC$ touch sides $ BC,\, CA$ and $ AB$ at $ D,\, E$ and $ F,$ respectively. Let $ \omega,\,\omega_{1},\,\omega_{2}$ and $ \omega_{3}$ denote the circumcircles of triangle $ ABC,\, AEF,\, BDF$ and $ CDE$ respectively.
Let $ \omega$ and $ \omega_{1}$ intersect at $ A$ and $ P,\,\omega$ and $ \omega_{2}$ intersect at $ B$ and $ Q,\,\omega$ and $ \omega_{3}$ intersect at $ C$ and $ R.$
$ a.$ Prove that $ \omega_{1},\,\omega_{2}$ and $ \omega_{3}$ intersect in a common point.
$ b.$ Show that $ PD,\, QE$ and $ RF$ are concurrent.
2014 ELMO Shortlist, 8
In triangle $ABC$ with incenter $I$ and circumcenter $O$, let $A',B',C'$ be the points of tangency of its circumcircle with its $A,B,C$-mixtilinear circles, respectively. Let $\omega_A$ be the circle through $A'$ that is tangent to $AI$ at $I$, and define $\omega_B, \omega_C$ similarly. Prove that $\omega_A,\omega_B,\omega_C$ have a common point $X$ other than $I$, and that $\angle AXO = \angle OXA'$.
[i]Proposed by Sammy Luo[/i]
1995 India National Olympiad, 4
Let $ABC$ be a triangle and a circle $\Gamma'$ be drawn lying outside the triangle, touching its incircle $\Gamma$ externally, and also the two sides $AB$ and $AC$. Show that the ratio of the radii of the circles $\Gamma'$ and $\Gamma$ is equal to $\tan^ 2 { \left( \dfrac{ \pi - A }{4} \right) }.$
2009 Korea National Olympiad, 1
Let $I, O$ be the incenter and the circumcenter of triangle $ABC$, and $D,E,F$ be the circumcenters of triangle $ BIC, CIA, AIB$. Let $ P, Q, R$ be the midpoints of segments $ DI, EI, FI $. Prove that the circumcenter of triangle $PQR $, $M$, is the midpoint of segment $IO$.
2011 Iran Team Selection Test, 6
The circle $\omega$ with center $O$ has given. From an arbitrary point $T$ outside of $\omega$ draw tangents $TB$ and $TC$ to it. $K$ and $H$ are on $TB$ and $TC$ respectively.
[b]a)[/b] $B'$ and $C'$ are the second intersection point of $OB$ and $OC$ with $\omega$ respectively. $K'$ and $H'$ are on angle bisectors of $\angle BCO$ and $\angle CBO$ respectively such that $KK' \bot BC$ and $HH'\bot BC$. Prove that $K,H',B'$ are collinear if and only if $H,K',C'$ are collinear.
[b]b)[/b] Consider there exist two circle in $TBC$ such that they are tangent two each other at $J$ and both of them are tangent to $\omega$.and one of them is tangent to $TB$ at $K$ and other one is tangent to $TC$ at $H$. Prove that two quadrilateral $BKJI$ and $CHJI$ are cyclic ($I$ is incenter of triangle $OBC$).
2019 USA TSTST, 9
Let $ABC$ be a triangle with incenter $I$. Points $K$ and $L$ are chosen on segment $BC$ such that the incircles of $\triangle ABK$ and $\triangle ABL$ are tangent at $P$, and the incircles of $\triangle ACK$ and $\triangle ACL$ are tangent at $Q$. Prove that $IP=IQ$.
[i]Ankan Bhattacharya[/i]
VI Soros Olympiad 1999 - 2000 (Russia), 11.6
It is known that a $n$-vertex contains within itself a polyhedron $M$ with a center of symmetry at some point $Q$ and is itself contained in a polyhedron homothetic to $M$ with a homothety center at a point $Q$ and coefficient $k$. Find the smallest value of $k$ if
a) $n = 4$,
b) $n = 5$.
2005 All-Russian Olympiad, 2
We have an acute-angled triangle $ABC$, and $AA',BB'$ are its altitudes. A point $D$ is chosen on the arc $ACB$ of the circumcircle of $ABC$. If $P=AA'\cap BD,Q=BB'\cap AD$, show that the midpoint of $PQ$ lies on $A'B'$.
2008 AIME Problems, 5
In trapezoid $ ABCD$ with $ \overline{BC}\parallel\overline{AD}$, let $ BC\equal{}1000$ and $ AD\equal{}2008$. Let $ \angle A\equal{}37^\circ$, $ \angle D\equal{}53^\circ$, and $ m$ and $ n$ be the midpoints of $ \overline{BC}$ and $ \overline{AD}$, respectively. Find the length $ MN$.
2006 Turkey MO (2nd round), 2
$ABC$ be a triangle. Its incircle touches the sides $CB, AC, AB$ respectively at $N_{A},N_{B},N_{C}$. The orthic triangle of $ABC$ is $H_{A}H_{B}H_{C}$ with $H_{A}, H_{B}, H_{C}$ are respectively on $BC, AC, AB$. The incenter of $AH_{C}H_{B}$ is $I_{A}$; $I_{B}$ and $I_{C}$ were defined similarly.
Prove that the hexagon $I_{A}N_{B}I_{C}N_{A}I_{B}N_{C}$ has all sides equal.
2008 Junior Balkan Team Selection Tests - Romania, 3
Let $ ABC$ be an acute-angled triangle. We consider the equilateral triangle $ A'UV$, where $ A' \in (BC)$, $ U\in (AC)$ and $ V\in(AB)$ such that $ UV \parallel BC$. We define the points $ B',C'$ in the same way. Prove that $ AA'$, $ BB'$ and $ CC'$ are concurrent.
2008 India National Olympiad, 5
Let $ ABC$ be a triangle; $ \Gamma_A,\Gamma_B,\Gamma_C$ be three equal, disjoint circles inside $ ABC$ such that $ \Gamma_A$ touches $ AB$ and $ AC$; $ \Gamma_B$ touches $ AB$ and $ BC$; and $ \Gamma_C$ touches $ BC$ and $ CA$. Let $ \Gamma$ be a circle touching circles $ \Gamma_A, \Gamma_B, \Gamma_C$ externally. Prove that the line joining the circum-centre $ O$ and the in-centre $ I$ of triangle $ ABC$ passes through the centre of $ \Gamma$.
2014 ELMO Shortlist, 8
In triangle $ABC$ with incenter $I$ and circumcenter $O$, let $A',B',C'$ be the points of tangency of its circumcircle with its $A,B,C$-mixtilinear circles, respectively. Let $\omega_A$ be the circle through $A'$ that is tangent to $AI$ at $I$, and define $\omega_B, \omega_C$ similarly. Prove that $\omega_A,\omega_B,\omega_C$ have a common point $X$ other than $I$, and that $\angle AXO = \angle OXA'$.
[i]Proposed by Sammy Luo[/i]
2008 Romania National Olympiad, 4
Let $ ABCD$ be a rectangle with center $ O$, $ AB\neq BC$. The perpendicular from $ O$ to $ BD$ cuts the lines $ AB$ and $ BC$ in $ E$ and $ F$ respectively. Let $ M,N$ be the midpoints of the segments $ CD,AD$ respectively. Prove that $ FM \perp EN$.