This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 393

2018 Morocco TST., 3

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2009 China Team Selection Test, 1

Given that circle $ \omega$ is tangent internally to circle $ \Gamma$ at $ S.$ $ \omega$ touches the chord $ AB$ of $ \Gamma$ at $ T$. Let $ O$ be the center of $ \omega.$ Point $ P$ lies on the line $ AO.$ Show that $ PB\perp AB$ if and only if $ PS\perp TS.$

1997 Romania Team Selection Test, 4

Let $ABC$ be a triangle, $D$ be a point on side $BC$, and let $\mathcal{O}$ be the circumcircle of triangle $ABC$. Show that the circles tangent to $\mathcal{O},AD,BD$ and to $\mathcal{O},AD,DC$ are tangent to each other if and only if $\angle BAD=\angle CAD$. [i]Dan Branzei[/i]

2013 Taiwan TST Round 1, 6

Let $ABCD$ be a convex quadrilateral with non-parallel sides $BC$ and $AD$. Assume that there is a point $E$ on the side $BC$ such that the quadrilaterals $ABED$ and $AECD$ are circumscribed. Prove that there is a point $F$ on the side $AD$ such that the quadrilaterals $ABCF$ and $BCDF$ are circumscribed if and only if $AB$ is parallel to $CD$.

2003 ITAMO, 3

Let a semicircle is given with diameter $AB$ and centre $O$ and let $C$ be a arbitrary point on the segment $OB$. Point $D$ on the semicircle is such that $CD$ is perpendicular to $AB$. A circle with centre $P$ is tangent to the arc $BD$ at $F$ and to the segment $CD$ and $AB$ at $E$ and $G$ respectively. Prove that the triangle $ADG$ is isosceles.

2011 China Western Mathematical Olympiad, 4

In a circle $\Gamma_{1}$, centered at $O$, $AB$ and $CD$ are two unequal in length chords intersecting at $E$ inside $\Gamma_{1}$. A circle $\Gamma_{2}$, centered at $I$ is tangent to $\Gamma_{1}$ internally at $F$, and also tangent to $AB$ at $G$ and $CD$ at $H$. A line $l$ through $O$ intersects $AB$ and $CD$ at $P$ and $Q$ respectively such that $EP = EQ$. The line $EF$ intersects $l$ at $M$. Prove that the line through $M$ parallel to $AB$ is tangent to $\Gamma_{1}$

2002 Balkan MO, 3

Two circles with different radii intersect in two points $A$ and $B$. Let the common tangents of the two circles be $MN$ and $ST$ such that $M,S$ lie on the first circle, and $N,T$ on the second. Prove that the orthocenters of the triangles $AMN$, $AST$, $BMN$ and $BST$ are the four vertices of a rectangle.

2011 AIME Problems, 4

In triangle $ABC$, $AB=125,AC=117$, and $BC=120$. The angle bisector of angle $A$ intersects $\overline{BC}$ at point $L$, and the angle bisector of angle $B$ intersects $\overline{AC}$ at point $K$. Let $M$ and $N$ be the feet of the perpendiculars from $C$ to $\overline{BK}$ and $\overline{AL}$, respectively. Find $MN$.

2006 China Team Selection Test, 1

Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.

2006 Iran MO (3rd Round), 1

Prove that in triangle $ABC$, radical center of its excircles lies on line $GI$, which $G$ is Centroid of triangle $ABC$, and $I$ is the incenter.

2006 France Team Selection Test, 2

Given a triangle $ABC$ satisfying $AC+BC=3\cdot AB$. The incircle of triangle $ABC$ has center $I$ and touches the sides $BC$ and $CA$ at the points $D$ and $E$, respectively. Let $K$ and $L$ be the reflections of the points $D$ and $E$ with respect to $I$. Prove that the points $A$, $B$, $K$, $L$ lie on one circle. [i]Proposed by Dimitris Kontogiannis, Greece[/i]

2004 IMO Shortlist, 3

Let $O$ be the circumcenter of an acute-angled triangle $ABC$ with ${\angle B<\angle C}$. The line $AO$ meets the side $BC$ at $D$. The circumcenters of the triangles $ABD$ and $ACD$ are $E$ and $F$, respectively. Extend the sides $BA$ and $CA$ beyond $A$, and choose on the respective extensions points $G$ and $H$ such that ${AG=AC}$ and ${AH=AB}$. Prove that the quadrilateral $EFGH$ is a rectangle if and only if ${\angle ACB-\angle ABC=60^{\circ }}$. [i]Proposed by Hojoo Lee, Korea[/i]

1989 Polish MO Finals, 2

$k_1, k_2, k_3$ are three circles. $k_2$ and $k_3$ touch externally at $P$, $k_3$ and $k_1$ touch externally at $Q$, and $k_1$ and $k_2$ touch externally at $R$. The line $PQ$ meets $k_1$ again at $S$, the line $PR$ meets $k_1$ again at $T$. The line $RS$ meets $k_2$ again at $U$, and the line $QT$ meets $k_3$ again at $V$. Show that $P, U, V$ are collinear.

2014 Contests, 2

The points $K$ and $L$ on the side $BC$ of a triangle $\triangle{ABC}$ are such that $\widehat{BAK}=\widehat{CAL}=90^\circ$. Prove that the midpoint of the altitude drawn from $A$, the midpoint of $KL$ and the circumcentre of $\triangle{ABC}$ are collinear. [i](A. Akopyan, S. Boev, P. Kozhevnikov)[/i]

2007 Vietnam Team Selection Test, 2

Let $ABC$ be an acute triangle with incricle $(I)$. $(K_{A})$ is the cricle such that $A\in (K_{A})$ and $AK_{A}\perp BC$ and it in-tangent for $(I)$ at $A_{1}$, similary we have $B_{1},C_{1}$. a) Prove that $AA_{1},BB_{1},CC_{1}$ are concurrent, called point-concurrent is $P$. b) Assume circles $(J_{A}),(J_{B}),(J_{C})$ are symmetry for excircles $(I_{A}),(I_{B}),(I_{C})$ across midpoints of $BC,CA,AB$ ,resp. Prove that $P_{P/(J_{A})}=P_{P/(J_{B})}=P_{P/(J_{C})}$. Note. If $(O;R)$ is a circle and $M$ is a point then $P_{M/(O)}=OM^{2}-R^{2}$.

2006 India IMO Training Camp, 2

Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2005 Moldova Team Selection Test, 2

Let $O$ be the circumcenter of an acute-angled triangle $ABC$ with ${\angle B<\angle C}$. The line $AO$ meets the side $BC$ at $D$. The circumcenters of the triangles $ABD$ and $ACD$ are $E$ and $F$, respectively. Extend the sides $BA$ and $CA$ beyond $A$, and choose on the respective extensions points $G$ and $H$ such that ${AG=AC}$ and ${AH=AB}$. Prove that the quadrilateral $EFGH$ is a rectangle if and only if ${\angle ACB-\angle ABC=60^{\circ }}$. [i]Proposed by Hojoo Lee, Korea[/i]

2009 Kazakhstan National Olympiad, 2

Let in-circle of $ABC$ touch $AB$, $BC$, $AC$ in $C_1$, $A_1$, $B_1$ respectively. Let $H$- intersection point of altitudes in $A_1B_1C_1$, $I$ and $O$-be in-center and circumcenter of $ABC$ respectively. Prove, that $I, O, H$ lies on one line.

2009 India IMO Training Camp, 1

Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$, $ r$ being inradius.

2007 IMO Shortlist, 4

Consider five points $ A$, $ B$, $ C$, $ D$ and $ E$ such that $ ABCD$ is a parallelogram and $ BCED$ is a cyclic quadrilateral. Let $ \ell$ be a line passing through $ A$. Suppose that $ \ell$ intersects the interior of the segment $ DC$ at $ F$ and intersects line $ BC$ at $ G$. Suppose also that $ EF \equal{} EG \equal{} EC$. Prove that $ \ell$ is the bisector of angle $ DAB$. [i]Author: Charles Leytem, Luxembourg[/i]

2003 Iran MO (3rd Round), 6

let the incircle of a triangle ABC touch BC,AC,AB at A1,B1,C1 respectively. M and N are the midpoints of AB1 and AC1 respectively. MN meets A1C1 at T . draw two tangents TP and TQ through T to incircle. PQ meets MN at L and B1C1 meets PQ at K . assume I is the center of the incircle . prove IK is parallel to AL

1998 IMO Shortlist, 5

Let $ABC$ be a triangle, $H$ its orthocenter, $O$ its circumcenter, and $R$ its circumradius. Let $D$ be the reflection of the point $A$ across the line $BC$, let $E$ be the reflection of the point $B$ across the line $CA$, and let $F$ be the reflection of the point $C$ across the line $AB$. Prove that the points $D$, $E$ and $F$ are collinear if and only if $OH=2R$.

2003 France Team Selection Test, 1

Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.

1998 Korea Junior Math Olympiad, 3

$O$ is the circumcenter of $ABC$, and $H$ is the orthocenter of $ABC$. If $D$ is a midpoint of $AC$ and $E$ is the intersection of $BO$ and $ABC$'s circumcircle not $B$, show that three points $H, D, E$ are collinear.

1970 Czech and Slovak Olympiad III A, 5

Let a real number $k$ and points $S,A,SA=1$ in plane be given. Denote $A'$ the image of $A$ under rotation by an oriented angle $\varphi$ with respect to center $S$. Similarly, let $A''$ be the image of $A'$ under homothety with the factor $\frac{1}{\cos\varphi-k\sin\varphi}$ with respect to center $S.$ Denote the locus \[\ell=\bigl\{A''\mid\varphi\in(-\pi,\pi],\cos\varphi-k\sin\varphi\neq0\bigr\}.\] Show that $\ell$ is a line containing $A.$