This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2007 China Team Selection Test, 2

Let $ ABCD$ be the inscribed quadrilateral with the circumcircle $ \omega$.Let $ \zeta$ be another circle that internally tangent to $ \omega$ and to the lines $ BC$ and $ AD$ at points $ M,N$ respectively.Let $ I_1,I_2$ be the incenters of the $ \triangle ABC$ and $ \triangle ABD$.Prove that $ M,I_1,I_2,N$ are collinear.

1986 Balkan MO, 1

A line passing through the incenter $I$ of the triangle $ABC$ intersect its incircle at $D$ and $E$ and its circumcircle at $F$ and $G$, in such a way that the point $D$ lies between $I$ and $F$. Prove that: $DF \cdot EG \geq r^{2}$.

2020 Yasinsky Geometry Olympiad, 3

The segments $BF$ and $CN$ are the altitudes in the acute-angled triangle $ABC$. The line $OI$, which connects the centers of the circumscribed and inscribed circles of triangle $ABC$, is parallel to the line $FN$. Find the length of the altitude $AK$ in the triangle $ABC$ if the radii of its circumscribed and inscribed circles are $R$ and $r$, respectively. (Grigory Filippovsky)

1988 IMO Longlists, 69

Let $ Q$ be the centre of the inscribed circle of a triangle $ ABC.$ Prove that for any point $ P,$ \[ a(PA)^2 \plus{} b(PB)^2 \plus{} c(PC)^2 \equal{} a(QA)^2 \plus{} b(QB)^2 \plus{} c(QC)^2 \plus{} (a \plus{} b \plus{} c)(QP)^2, \] where $ a \equal{} BC, b \equal{} CA$ and $ c \equal{} AB.$

1994 Baltic Way, 12

Tags: incenter , geometry
The inscribed circle of the triangle $A_1A_2A_3$ touches the sides $A_2A_3,A_3A_1,A_1A_2$ at points $S_1,S_2,S_3$, respectively. Let $O_1,O_2,O_3$ be the centres of the inscribed circles of triangles $A_1S_2S_3, A_2S_3S_1,A_3S_1S_2$, respectively. Prove that the straight lines $O_1S_1,O_2S_2,O_3S_3$ intersect at one point.

2022 Novosibirsk Oral Olympiad in Geometry, 4

A point $D$ is marked on the side $AC$ of triangle $ABC$. The circumscribed circle of triangle $ABD$ passes through the center of the inscribed circle of triangle $BCD$. Find $\angle ACB$ if $\angle ABC = 40^o$.

2021 Baltic Way, 12

Tags: geometry , incenter
Let $I$ be the incentre of a triangle $ABC$. Let $F$ and $G$ be the projections of $A$ onto the lines $BI$ and $CI$, respectively. Rays $AF$ and $AG$ intersect the circumcircles of the triangles $CFI$ and $BGI$ for the second time at points $K$ and $L$, respectively. Prove that the line $AI$ bisects the segment $KL$.

Novosibirsk Oral Geo Oly IX, 2021.7

A circle concentric with the inscribed circle of $ABC$ intersects the sides of the triangle at six points forming a convex hexagon $A_1A_2B_1B_2C_1C_2$ (points $C_1$ and $C_2$ on the $AB$ side, $A_1$ and $A_2$ on $BC$, $B_1$ and $B_2$ on $AC$). Prove that if line $A_1B_1$ is parallel to the bisector of angle $B$, then line $A_2C_2$ is parallel to the bisector of angle $C$.

2012 Sharygin Geometry Olympiad, 12

Let $O$ be the circumcenter of an acute-angled triangle $ABC$. A line passing through $O$ and parallel to $BC$ meets $AB$ and $AC$ in points $P$ and $Q$ respectively. The sum of distances from $O$ to $AB$ and $AC$ is equal to $OA$. Prove that $PB + QC = PQ$.

2003 Croatia National Olympiad, Problem 1

Tags: geometry , incenter
Let $I$ be a point on the bisector of angle $BAC$ of a triangle $ABC$. Points $M,N$ are taken on the respective sides $AB$ and $AC$ so that $\angle ABI=\angle NIC$ and $\angle ACI=\angle MIB$. Show that $I$ is the incenter of triangle $ABC$ if and only if points $M,N$ and $I$ are collinear.

2013 ELMO Shortlist, 4

Triangle $ABC$ is inscribed in circle $\omega$. A circle with chord $BC$ intersects segments $AB$ and $AC$ again at $S$ and $R$, respectively. Segments $BR$ and $CS$ meet at $L$, and rays $LR$ and $LS$ intersect $\omega$ at $D$ and $E$, respectively. The internal angle bisector of $\angle BDE$ meets line $ER$ at $K$. Prove that if $BE = BR$, then $\angle ELK = \tfrac{1}{2} \angle BCD$. [i]Proposed by Evan Chen[/i]

2010 IMO Shortlist, 7

Three circular arcs $\gamma_1, \gamma_2,$ and $\gamma_3$ connect the points $A$ and $C.$ These arcs lie in the same half-plane defined by line $AC$ in such a way that arc $\gamma_2$ lies between the arcs $\gamma_1$ and $\gamma_3.$ Point $B$ lies on the segment $AC.$ Let $h_1, h_2$, and $h_3$ be three rays starting at $B,$ lying in the same half-plane, $h_2$ being between $h_1$ and $h_3.$ For $i, j = 1, 2, 3,$ denote by $V_{ij}$ the point of intersection of $h_i$ and $\gamma_j$ (see the Figure below). Denote by $\widehat{V_{ij}V_{kj}}\widehat{V_{kl}V_{il}}$ the curved quadrilateral, whose sides are the segments $V_{ij}V_{il},$ $V_{kj}V_{kl}$ and arcs $V_{ij}V_{kj}$ and $V_{il}V_{kl}.$ We say that this quadrilateral is $circumscribed$ if there exists a circle touching these two segments and two arcs. Prove that if the curved quadrilaterals $\widehat{V_{11}V_{21}}\widehat{V_{22}V_{12}}, \widehat{V_{12}V_{22}}\widehat{V_{23}V_{13}},\widehat{V_{21}V_{31}}\widehat{V_{32}V_{22}}$ are circumscribed, then the curved quadrilateral $\widehat{V_{22}V_{32}}\widehat{V_{33}V_{23}}$ is circumscribed, too. [i]Proposed by Géza Kós, Hungary[/i] [asy] pathpen=black; size(400); pair A=(0,0), B=(4,0), C=(10,0); draw(L(A,C,0.3)); MP("A",A); MP("B",B); MP("C",C); pair X=(5,-7); path G1=D(arc(X,C,A)); pair Y=(5,7), Z=(9,6); draw(Z--B--Y); struct T {pair C;real r;}; T f(pair X, pair B, pair Y, pair Z) { pair S=unit(Y-B)+unit(Z-B); real s=abs(sin(angle((Y-B)/(Z-B))/2)); real t=10, r=abs(X-A); pair Q; for(int k=0;k<30;++k) { Q=B+t*S; t-=(abs(X-Q)-r)/abs(S)-s*t; } T T=new T; T.C=Q; T.r=s*t*abs(S); return T; } void g(pair Q, real r) { real t=0; for(int k=0;k<30;++k) { X=(5,t); t+=(abs(X-Q)+r-abs(X-A)); } } pair Z1=(1.07,6); draw(B--Z1); T T=f(X,B,Y,Z1); draw(CR(T.C,T.r)); T T=f(X,B,Y,Z); draw(CR(T.C,T.r)); g(T.C,T.r); path G2=D(arc(X,C,A)); T T=f(X,B,Y,Z1); draw(CR(T.C,T.r)); T=f(X,B,Y,Z); draw(CR(T.C,T.r)); g(T.C,T.r); path G3=D(arc(X,C,A)); pen p=black+fontsize(8); MC("\gamma_1",G1,0.85,p); MC("\gamma_2",G2,0.85,NNW,p); MC("\gamma_3",G3,0.85,WNW,p); MC("h_1",B--Z1,0.95,E,p); MC("h_2",B--Y,0.95,E,p); MC("h_3",B--Z,0.95,E,p); path[] G={G1,G2,G3}; path[] H={B--Z1,B--Y,B--Z}; pair[][] al={{S+SSW,S+SSW,3*S},{SE,NE,NW},{2*SSE,2*SSE,2*E}}; for(int i=0;i<3;++i) for(int j=0;j<3;++j) MP("V_{"+string(i+1)+string(j+1)+"}",IP(H[i],G[j]),al[i][j],fontsize(8));[/asy]

2005 District Olympiad, 2

Let $ABC$ be a triangle inscribed in a circle of center $O$ and radius $R$. Let $I$ be the incenter of $ABC$, and let $r$ be the inradius of the same triangle, $O\neq I$, and let $G$ be its centroid. Prove that $IG\perp BC$ if and only if $b=c$ or $b+c=3a$.

1981 IMO Shortlist, 15

Consider a variable point $P$ inside a given triangle $ABC$. Let $D$, $E$, $F$ be the feet of the perpendiculars from the point $P$ to the lines $BC$, $CA$, $AB$, respectively. Find all points $P$ which minimize the sum \[ {BC\over PD}+{CA\over PE}+{AB\over PF}. \]

2015 Korea Junior Math Olympiad, 5

Let $I$ be the incenter of an acute triangle $\triangle ABC$, and let the incircle be $\Gamma$. Let the circumcircle of $\triangle IBC$ hit $\Gamma$ at $D, E$, where $D$ is closer to $B$ and $E$ is closer to $C$. Let $\Gamma \cap BE = K (\not= E)$, $CD \cap BI = T$, and $CD \cap \Gamma = L (\not= D)$. Let the line passing $T$ and perpendicular to $BI$ meet $\Gamma$ at $P$, where $P$ is inside $\triangle IBC$. Prove that the tangent to $\Gamma$ at $P$, $KL$, $BI$ are concurrent.

2013 ELMO Shortlist, 2

Let $ABC$ be a scalene triangle with circumcircle $\Gamma$, and let $D$,$E$,$F$ be the points where its incircle meets $BC$, $AC$, $AB$ respectively. Let the circumcircles of $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$ meet $\Gamma$ a second time at $X,Y,Z$ respectively. Prove that the perpendiculars from $A,B,C$ to $AX,BY,CZ$ respectively are concurrent. [i]Proposed by Michael Kural[/i]

1995 Iran MO (2nd round), 2

Let $ABC$ be an acute triangle and let $\ell$ be a line in the plane of triangle $ABC.$ We've drawn the reflection of the line $\ell$ over the sides $AB, BC$ and $AC$ and they intersect in the points $A', B'$ and $C'.$ Prove that the incenter of the triangle $A'B'C'$ lies on the circumcircle of the triangle $ABC.$

2015 Moldova Team Selection Test, 2

Consider a triangle $\triangle ABC$, let the incircle centered at $I$ touch the sides $BC,CA,AB$ at points $D,E,F$ respectively. Let the angle bisector of $\angle BIC$ meet $BC$ at $M$, and the angle bisector of $\angle EDF$ meet $EF$ at $N$. Prove that $A,M,N$ are collinear.

2012 Iran MO (2nd Round), 1

Consider a circle $C_1$ and a point $O$ on it. Circle $C_2$ with center $O$, intersects $C_1$ in two points $P$ and $Q$. $C_3$ is a circle which is externally tangent to $C_2$ at $R$ and internally tangent to $C_1$ at $S$ and suppose that $RS$ passes through $Q$. Suppose $X$ and $Y$ are second intersection points of $PR$ and $OR$ with $C_1$. Prove that $QX$ is parallel with $SY$.

2002 China Team Selection Test, 2

Circles $ \omega_{1}$ and $ \omega_{2}$ intersect at points $ A$ and $ B.$ Points $ C$ and $ D$ are on circles $ \omega_{1}$ and $ \omega_{2},$ respectively, such that lines $ AC$ and $ AD$ are tangent to circles $ \omega_{2}$ and $ \omega_{1},$ respectively. Let $ I_{1}$ and $ I_{2}$ be the incenters of triangles $ ABC$ and $ ABD,$ respectively. Segments $ I_{1}I_{2}$ and $ AB$ intersect at $ E$. Prove that: $ \frac {1}{AE} \equal{} \frac {1}{AC} \plus{} \frac {1}{AD}$

2025 EGMO, 4

Let $ABC$ be an acute triangle with incentre $I$ and $AB \neq AC$. Let lines $BI$ and $CI$ intersect the circumcircle of $ABC$ at $P \neq B$ and $Q \neq C$, respectively. Consider points $R$ and $S$ such that $AQRB$ and $ACSP$ are parallelograms (with $AQ \parallel RB, AB \parallel QR, AC \parallel SP$, and $AP \parallel CS$). Let $T$ be the point of intersection of lines $RB$ and $SC$. Prove that points $R, S, T$, and $I$ are concyclic.

2014 Iran MO (3rd Round), 4

$D$ is an arbitrary point lying on side $BC$ of $\triangle{ABC}$. Circle $\omega_1$ is tangent to segments $AD$ , $BD$ and the circumcircle of $\triangle{ABC}$ and circle $\omega_2$ is tangent to segments $AD$ , $CD$ and the circumcircle of $\triangle{ABC}$. Let $X$ and $Y$ be the intersection points of $\omega_1$ and $\omega_2$ with $BC$ respectively and take $M$ as the midpoint of $XY$. Let $T$ be the midpoint of arc $BC$ which does not contain $A$. If $I$ is the incenter of $\triangle{ABC}$, prove that $TM$ goes through the midpoint of $ID$.

2019 India IMO Training Camp, P1

Tags: geometry , incenter
In an acute angled triangle $ABC$ with $AB < AC$, let $I$ denote the incenter and $M$ the midpoint of side $BC$. The line through $A$ perpendicular to $AI$ intersects the tangent from $M$ to the incircle (different from line $BC$) at a point $P$> Show that $AI$ is tangent to the circumcircle of triangle $MIP$. [i]Proposed by Tejaswi Navilarekallu[/i]

2011 Bangladesh Mathematical Olympiad, HS

[size=130][b]Higher Secondary: 2011[/b] [/size] Time: 4 Hours [b]Problem 1:[/b] Prove that for any non-negative integer $n$ the numbers $1, 2, 3, ..., 4n$ can be divided in tow mutually exclusive classes with equal number of members so that the sum of numbers of each class is equal. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=709 [b]Problem 2:[/b] In the first round of a chess tournament, each player plays against every other player exactly once. A player gets $3, 1$ or $-1$ points respectively for winning, drawing or losing a match. After the end of the first round, it is found that the sum of the scores of all the players is $90$. How many players were there in the tournament? http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=708 [b]Problem 3:[/b] $E$ is the midpoint of side $BC$ of rectangle $ABCD$. $A$ point $X$ is chosen on $BE$. $DX$ meets extended $AB$ at $P$. Find the position of $X$ so that the sum of the areas of $\triangle BPX$ and $\triangle DXC$ is maximum with proof. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=683 [b]Problem 4:[/b] Which one is larger 2011! or, $(1006)^{2011}$? Justify your answer. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=707 [b]Problem 5:[/b] In a scalene triangle $ABC$ with $\angle A = 90^{\circ}$, the tangent line at $A$ to its circumcircle meets line $BC$ at $M$ and the incircle touches $AC$ at $S$ and $AB$ at $R$. The lines $RS$ and $BC$ intersect at $N$ while the lines $AM$ and $SR$ intersect at $U$. Prove that the triangle $UMN$ is isosceles. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=706 [b]Problem 6:[/b] $p$ is a prime and sum of the numbers from $1$ to $p$ is divisible by all primes less or equal to $p$. Find the value of $p$ with proof. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=693 [b]Problem 7:[/b] Consider a group of $n > 1$ people. Any two people of this group are related by mutual friendship or mutual enmity. Any friend of a friend and any enemy of an enemy is a friend. If $A$ and $B$ are friends/enemies then we count it as $1$ [b]friendship/enmity[/b]. It is observed that the number of friendships and number of enmities are equal in the group. Find all possible values of $n$. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=694 [b]Problem 8:[/b] $ABC$ is a right angled triangle with $\angle A = 90^{\circ}$ and $D$ be the midpoint of $BC$. A point $F$ is chosen on $AB$. $CA$ and $DF$ meet at $G$ and $GB \parallel AD$. $CF$ and $AD$ meet at $O$ and $AF = FO$. $GO$ meets $BC$ at $R$. Find the sides of $ABC$ if the area of $GDR$ is $\dfrac{2}{\sqrt{15}}$ http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=704 [b]Problem 9:[/b] The repeat of a natural number is obtained by writing it twice in a row (for example, the repeat of $123$ is $123123$). Find a positive integer (if any) whose repeat is a perfect square. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=703 [b]Problem 10:[/b] Consider a square grid with $n$ rows and $n$ columns, where $n$ is odd (similar to a chessboard). Among the $n^2$ squares of the grid, $p$ are black and the others are white. The number of black squares is maximized while their arrangement is such that horizontally, vertically or diagonally neighboring black squares are separated by at least one white square between them. Show that there are infinitely many triplets of integers $(p, q, n)$ so that the number of white squares is $q^2$. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=702 The problems of the Junior categories are available in [url=http://matholympiad.org.bd/forum/]BdMO Online forum[/url]: http://matholympiad.org.bd/forum/viewtopic.php?f=25&t=678

2016 Costa Rica - Final Round, G3

Let $\vartriangle ABC$ be acute, with incircle $\Gamma$ and incenter $ I$. $\Gamma$ touches sides $AB$, $BC$ and $AC$ at $Z$, $X$ and $Y$, respectively. Let $D$ be the intersection of $XZ$ with $CI$ and $L$ the intersection of $BI$ with $XY$. Suppose $D$ and $L$ are outside of $\vartriangle ABC$. Prove that $A$, $D$, $Z$, $I$, $Y$, and $ L$ lie on a circle.