This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2020 IMO Shortlist, G6

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

2002 IMO Shortlist, 1

Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.

JBMO Geometry Collection, 2006

Tags: incenter , geometry
The triangle $ABC$ is isosceles with $AB=AC$, and $\angle{BAC}<60^{\circ}$. The points $D$ and $E$ are chosen on the side $AC$ such that, $EB=ED$, and $\angle{ABD}\equiv\angle{CBE}$. Denote by $O$ the intersection point between the internal bisectors of the angles $\angle{BDC}$ and $\angle{ACB}$. Compute $\angle{COD}$.

2007 Moldova Team Selection Test, 3

Let $ABC$ be a triangle. A circle is tangent to sides $AB, AC$ and to the circumcircle of $ABC$ (internally) at points $P, Q, R$ respectively. Let $S$ be the point where $AR$ meets $PQ$. Show that \[\angle{SBA}\equiv \angle{SCA}\]

2007 Greece Junior Math Olympiad, 1

In a triangle $ABC$ with the incentre $I,$ the angle bisector $AD$ meets the circumcircle of triangle $BIC$ at point $N\neq I$. a) Express the angles of $\triangle BCN$ in terms of the angles of triangle $ABC$. b) Show that the circumcentre of triangle $BIC$ is at the intersection of $AI$ and the circumcentre of $ABC$.

2012 Poland - Second Round, 2

Let $ABC$ be a triangle with $\angle A=60^{\circ}$ and $AB\neq AC$, $I$-incenter, $O$-circumcenter. Prove that perpendicular bisector of $AI$, line $OI$ and line $BC$ have a common point.

2006 Iran Team Selection Test, 5

Let $ABC$ be an acute angle triangle. Suppose that $D,E,F$ are the feet of perpendicluar lines from $A,B,C$ to $BC,CA,AB$. Let $P,Q,R$ be the feet of perpendicular lines from $A,B,C$ to $EF,FD,DE$. Prove that \[ 2(PQ+QR+RP)\geq DE+EF+FD \]

2017 Moldova Team Selection Test, 7

Let $ABC$ be an acute triangle, and $H$ its orthocenter. The distance from $H$ to rays $BC$, $CA$, and $AB$ is denoted by $d_a$, $d_b$, and $d_c$, respectively. Let $R$ be the radius of circumcenter of $\triangle ABC$ and $r$ be the radius of incenter of $\triangle ABC$. Prove the following inequality: $$d_a+d_b+d_c \le \frac{3R^2}{4r}$$.

2023 Turkey Junior National Olympiad, 2

Tags: incenter , geometry
Let $ABCD$ be an inscribed quadrilateral. Let the incenters of $BAD$ and $CAD$ be $I$ and $J$ respectively. Let the intersection point of the line that passes through $I$ and perpendicular to $BD$ and the line that passes through $J$ and perpendicular to $AC$ be $K$. Prove that $KI=KJ$

2019 Sharygin Geometry Olympiad, 7

Let $P$ be an arbitrary point on side $BC$ of triangle $ABC$. Let $K$ be the incenter of triangle $PAB$. Let the incircle of triangle $PAC$ touch $BC$ at $F$. Point $G$ on $CK$ is such that $FG // PK$. Find the locus of $G$.

2015 Korea - Final Round, 2

In a triangle $\triangle ABC$ with incenter $I$, the incircle meets lines $BC, CA, AB$ at $D, E, F$ respectively. Define the circumcenter of $\triangle IAB$ and $\triangle IAC$ $O_1$ and $O_2$ respectively. Let the two intersections of the circumcircle of $\triangle ABC$ and line $EF$ be $P, Q$. Prove that the circumcenter of $\triangle DPQ$ lies on the line $O_1O_2$.

2024 Lusophon Mathematical Olympiad, 3

Let $ABC$ be a triangle with incentre $I$. A line $r$ that passes through $I$ intersects the circumcircles of triangles $AIB$ and $AIC$ at points $P$ and $Q$, respectively. Prove that the circumcentre of triangle $APQ$ is on the circumcircle of $ABC$.

2008 Iran MO (2nd Round), 2

Let $I_a$ be the $A$-excenter of $\Delta ABC$ and the $A$-excircle of $\Delta ABC$ be tangent to the lines $AB,AC$ at $B',C'$, respectively. $ I_aB,I_aC$ meet $B'C'$ at $P,Q$, respectively. $M$ is the meet point of $BQ,CP$. Prove that the length of the perpendicular from $M$ to $BC$ is equal to $r$ where $r$ is the radius of incircle of $\Delta ABC$.

1967 IMO Longlists, 9

Circle $k$ and its diameter $AB$ are given. Find the locus of the centers of circles inscribed in the triangles having one vertex on $AB$ and two other vertices on $k.$

1990 IMO Longlists, 90

Let $P$ be a variable point on the circumference of a quarter-circle with radii $OA, OB$ and $\angle AOB = 90^\circ$. H is the projection of $P$ on $OA$. Find the locus of the incenter of the right-angled triangle $HPO.$

2007 iTest Tournament of Champions, 4

Tags: incenter , geometry
In triangle $ABC$, points $A'$, $B'$, and $C'$ are chosen with $A'$ on segment $AB$, $B'$ on segment $BC$, and $C'$ on segment $CA$ so that triangle $A'B'C'$ is directly similar to $ABC$. The incenters of $ABC$ and $A'B'C'$ are $I$ and $I'$ respectively. Lines $BC$, $A'C'$, and $II'$ are parallel. If $AB=100$ and $AC=120$, what is the length of $BC$?

2022 Yasinsky Geometry Olympiad, 6

Let $s$ be an arbitrary straight line passing through the incenter $I$ of the triangle $ABC$ . Line $s$ intersects lines $AB$ and $BC$ at points $D$ and $E$, respectively. Points $P$ and $Q$ are the centers of the circumscribed circles of triangles $DAI$ and $CEI$, respectively, and point $F$ is the second intersection point of these circles. Prove that the circumcircle of the triangle $PQF$ is always passes through a fixed point on the plane regardless of the position of the straight line $s$. (Matvii Kurskyi)

2016 India Regional Mathematical Olympiad, 1

Tags: incenter , geometry
Let $ABC$ be a right angled triangle with $\angle B=90^{\circ}$. Let $I$ be the incentre of triangle $ABC$. Suppose $AI$ is extended to meet $BC$ at $F$ . The perpendicular on $AI$ at $I$ is extended to meet $AC$ at $E$ . Prove that $IE = IF$.

2001 Poland - Second Round, 2

In a triangle $ABC$, $I$ is the incentre and $D$ the intersection point of $AI$ and $BC$. Show that $AI+CD=AC$ if and only if $\angle B=60^{\circ}+\frac{_1}{^3}\angle C$.

2025 China National Olympiad, 2

Let $ABC$ be a triangle with incenter $I$. Denote the midpoints of $AI$, $AC$ and $CI$ by $L$, $M$ and $N$ respectively. Point $D$ lies on segment $AM$ such that $BC= BD$. Let the incircle of triangle $ABD$ be tangent to $AD$ and $BD$ at $E$ and $F$ respectively. Denote the circumcenter of triangle $AIC$ by $J$, and the circumcircle of triangle $JMD$ by $\omega$. Lines $MN$ and $JL$ meet $\omega$ again at $P$ and $Q$ respectively. Prove that $PQ$, $LN$ and $EF$ are concurrent.

2009 Vietnam National Olympiad, 3

Let $ A$, $ B$ be two fixed points and $ C$ is a variable point on the plane such that $ \angle ACB\equal{}\alpha$ (constant) ($ 0^{\circ}\le \alpha\le 180^{\circ}$). Let $ D$, $ E$, $ F$ be the projections of the incenter $ I$ of triangle $ ABC$ to its sides $ BC$, $ CA$, $ AB$, respectively. Denoted by $ M$, $ N$ the intersections of $ AI$, $ BI$ with $ EF$, respectively. Prove that the length of the segment $ MN$ is constant and the circumcircle of triangle $ DMN$ always passes through a fixed point.

1999 Tournament Of Towns, 1

The incentre of a triangle is joined by three segments to the three vertices of the triangle, thereby dividing it into three smaller triangles. If one of these three triangles is similar to the original triangle, find its angles. (A Shapovalov)

2014 Contests, 2

Let $ABCD$ be a convex cyclic quadrilateral with $AD=BD$. The diagonals $AC$ and $BD$ intersect in $E$. Let the incenter of triangle $\triangle BCE$ be $I$. The circumcircle of triangle $\triangle BIE$ intersects side $AE$ in $N$. Prove \[ AN \cdot NC = CD \cdot BN. \]

2009 Middle European Mathematical Olympiad, 10

Suppose that $ ABCD$ is a cyclic quadrilateral and $ CD\equal{}DA$. Points $ E$ and $ F$ belong to the segments $ AB$ and $ BC$ respectively, and $ \angle ADC\equal{}2\angle EDF$. Segments $ DK$ and $ DM$ are height and median of triangle $ DEF$, respectively. $ L$ is the point symmetric to $ K$ with respect to $ M$. Prove that the lines $ DM$ and $ BL$ are parallel.

2007 Iran Team Selection Test, 3

Let $\omega$ be incircle of $ABC$. $P$ and $Q$ are on $AB$ and $AC$, such that $PQ$ is parallel to $BC$ and is tangent to $\omega$. $AB,AC$ touch $\omega$ at $F,E$. Prove that if $M$ is midpoint of $PQ$, and $T$ is intersection point of $EF$ and $BC$, then $TM$ is tangent to $\omega$. [i]By Ali Khezeli[/i]