This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2007 China Team Selection Test, 2

Let $ I$ be the incenter of triangle $ ABC.$ Let $ M,N$ be the midpoints of $ AB,AC,$ respectively. Points $ D,E$ lie on $ AB,AC$ respectively such that $ BD\equal{}CE\equal{}BC.$ The line perpendicular to $ IM$ through $ D$ intersects the line perpendicular to $ IN$ through $ E$ at $ P.$ Prove that $ AP\perp BC.$

2010 Germany Team Selection Test, 2

Let $ABC$ be a triangle with incenter $I$ and let $X$, $Y$ and $Z$ be the incenters of the triangles $BIC$, $CIA$ and $AIB$, respectively. Let the triangle $XYZ$ be equilateral. Prove that $ABC$ is equilateral too. [i]Proposed by Mirsaleh Bahavarnia, Iran[/i]

2011 Harvard-MIT Mathematics Tournament, 6

Let $ABCD$ be a cyclic quadrilateral, and suppose that $BC = CD = 2$. Let $I$ be the incenter of triangle $ABD$. If $AI = 2$ as well, find the minimum value of the length of diagonal $BD$.

2019 Oral Moscow Geometry Olympiad, 1

In the triangle $ABC, I$ is the center of the inscribed circle, point $M$ lies on the side of $BC$, with $\angle BIM = 90^o$. Prove that the distance from point $M$ to line $AB$ is equal to the diameter of the circle inscribed in triangle $ABC$

2002 Kurschak Competition, 1

We have an acute-angled triangle which is not isosceles. We denote the orthocenter, the circumcenter and the incenter of it by $H$, $O$, $I$ respectively. Prove that if a vertex of the triangle lies on the circle $HOI$, then there must be another vertex on this circle as well.

2007 China National Olympiad, 1

Let $O, I$ be the circumcenter and incenter of triangle $ABC$. The incircle of $\triangle ABC$ touches $BC, CA, AB$ at points $D, E, F$ repsectively. $FD$ meets $CA$ at $P$, $ED$ meets $AB$ at $Q$. $M$ and $N$ are midpoints of $PE$ and $QF$ respectively. Show that $OI \perp MN$.

1988 IMO Shortlist, 23

Let $ Q$ be the centre of the inscribed circle of a triangle $ ABC.$ Prove that for any point $ P,$ \[ a(PA)^2 \plus{} b(PB)^2 \plus{} c(PC)^2 \equal{} a(QA)^2 \plus{} b(QB)^2 \plus{} c(QC)^2 \plus{} (a \plus{} b \plus{} c)(QP)^2, \] where $ a \equal{} BC, b \equal{} CA$ and $ c \equal{} AB.$

2007 China Team Selection Test, 2

Let $ ABCD$ be the inscribed quadrilateral with the circumcircle $ \omega$.Let $ \zeta$ be another circle that internally tangent to $ \omega$ and to the lines $ BC$ and $ AD$ at points $ M,N$ respectively.Let $ I_1,I_2$ be the incenters of the $ \triangle ABC$ and $ \triangle ABD$.Prove that $ M,I_1,I_2,N$ are collinear.

2016 Indonesia TST, 3

Circles $\Omega $ and $\omega $ are tangent at a point $P$ ($\omega $ lies inside $\Omega $). A chord $AB$ of $\Omega $ is tangent to $\omega $ at $C;$ the line $PC$ meets $\Omega $ again at $Q.$ Chords $QR$ and $QS$ of $ \Omega $ are tangent to $\omega .$ Let $I,X,$ and $Y$ be the incenters of the triangles $APB,$ $ARB,$ and $ASB,$ respectively. Prove that $\angle PXI+\angle PYI=90^{\circ }.$

2013 ELMO Shortlist, 8

Let $ABC$ be a triangle, and let $D$, $A$, $B$, $E$ be points on line $AB$, in that order, such that $AC=AD$ and $BE=BC$. Let $\omega_1, \omega_2$ be the circumcircles of $\triangle ABC$ and $\triangle CDE$, respectively, which meet at a point $F \neq C$. If the tangent to $\omega_2$ at $F$ cuts $\omega_1$ again at $G$, and the foot of the altitude from $G$ to $FC$ is $H$, prove that $\angle AGH=\angle BGH$. [i]Proposed by David Stoner[/i]

2006 Polish MO Finals, 2

Tetrahedron $ABCD$ in which $AB=CD$ is given. Sphere inscribed in it is tangent to faces $ABC$ and $ABD$ respectively in $K$ and $L$. Prove that if points $K$ and $L$ are centroids of faces $ABC$ and $ABD$ then tetrahedron $ABCD$ is regular.

2007 Oral Moscow Geometry Olympiad, 4

Let $I$ be the center of a circle inscribed in triangle $ABC$. The circle circumscribed about the triangle $BIC$ intersects lines $AB$ and $AC$ at points $E$ and $F$, respectively. Prove that the line $EF$ touches the circle inscribed in the triangle $ABC$.

2014 Sharygin Geometry Olympiad, 6

Tags: incenter , geometry
Let $I$ be the incenter of triangle $ABC$, and $M, N$ be the midpoints of arcs $ABC$ and $BAC$ of its circumcircle. Prove that points $M, I, N$ are collinear if and only if$ AC + BC = 3AB$. (A. Polyansky)

2020 South East Mathematical Olympiad, 2

In a scalene triangle $\Delta ABC$, $AB<AC$, $PB$ and $PC$ are tangents of the circumcircle $(O)$ of $\Delta ABC$. A point $R$ lies on the arc $\widehat{AC}$(not containing $B$), $PR$ intersects $(O)$ again at $Q$. Suppose $I$ is the incenter of $\Delta ABC$, $ID \perp BC$ at $D$, $QD$ intersects $(O)$ again at $G$. A line passing through $I$ and perpendicular to $AI$ intersects $AB,AC$ at $M,N$, respectively. Prove that, if $AR \parallel BC$, then $A,G,M,N$ are concyclic.

2014 Brazil National Olympiad, 6

Let $ABC$ be a triangle with incenter $I$ and incircle $\omega$. Circle $\omega_A$ is externally tangent to $\omega$ and tangent to sides $AB$ and $AC$ at $A_1$ and $A_2$, respectively. Let $r_A$ be the line $A_1A_2$. Define $r_B$ and $r_C$ in a similar fashion. Lines $r_A$, $r_B$ and $r_C$ determine a triangle $XYZ$. Prove that the incenter of $XYZ$, the circumcenter of $XYZ$ and $I$ are collinear.

Ukrainian TYM Qualifying - geometry, 2016.14

Using only a compass and a ruler, reconstruct triangle $ABC$ given the following three points: point $M$ the intersection of its medians, point $I$ is the center of its inscribed circle and the point $Q_a$ is touch point of the inscribed circle to side $BC$.

2015 China Second Round Olympiad, 2

Tags: geometry , incenter
In isoceles $\triangle ABC$, $AB=AC$, $I$ is its incenter, $D$ is a point inside $\triangle ABC$ such that $I,B,C,D$ are concyclic. The line through $C$ parallel to $BD$ meets $AD$ at $E$. Prove that $CD^2=BD\cdot CE$.

2015 Costa Rica - Final Round, G4

Consider $\vartriangle ABC$, right at $B$, let $I$ be its incenter and $F,D,E$ the points where the circle inscribed on sides AB, $BC$ and $AC$, respectively. If $M$ is the intersection point of $CI$ and $EF$, and $N$ is the intersection point of $DM$ and $AB$. Prove that $AN = ID$.

2019 China Team Selection Test, 5

In $\Delta ABC$, $AD \perp BC$ at $D$. $E,F$ lie on line $AB$, such that $BD=BE=BF$. Let $I,J$ be the incenter and $A$-excenter. Prove that there exist two points $P,Q$ on the circumcircle of $\Delta ABC$ , such that $PB=QC$, and $\Delta PEI \sim \Delta QFJ$ .

2003 IMAR Test, 3

The exinscribed circle of a triangle $ABC$ corresponding to its vertex $A$ touches the sidelines $AB$ and $AC$ in the points $M$ and $P$, respectively, and touches its side $BC$ in the point $N$. Show that if the midpoint of the segment $MP$ lies on the circumcircle of triangle $ABC$, then the points $O$, $N$, $I$ are collinear, where $I$ is the incenter and $O$ is the circumcenter of triangle $ABC$.

2018 China Northern MO, 1

In triangle $ABC$, let the circumcenter, incenter, and orthocenter be $O$, $I$, and $H$ respectively. Segments $AO$, $AI$, and $AH$ intersect the circumcircle of triangle $ABC$ at $D$, $E$, and $F$. $CD$ intersects $AE$ at $M$ and $CE$ intersects $AF$ at $N$. Prove that $MN$ is parallel to $BC$.

2009 AIME Problems, 15

In triangle $ ABC$, $ AB \equal{} 10$, $ BC \equal{} 14$, and $ CA \equal{} 16$. Let $ D$ be a point in the interior of $ \overline{BC}$. Let $ I_B$ and $ I_C$ denote the incenters of triangles $ ABD$ and $ ACD$, respectively. The circumcircles of triangles $ BI_BD$ and $ CI_CD$ meet at distinct points $ P$ and $ D$. The maximum possible area of $ \triangle BPC$ can be expressed in the form $ a\minus{}b\sqrt{c}$, where $ a$, $ b$, and $ c$ are positive integers and $ c$ is not divisible by the square of any prime. Find $ a\plus{}b\plus{}c$.

2011 Sharygin Geometry Olympiad, 6

Let $BB_1$ and $CC_1$ be the altitudes of acute-angled triangle $ABC$, and $A_0$ is the midpoint of $BC$. Lines $A_0B_1$ and $A_0C_1$ meet the line passing through $A$ and parallel to $BC$ in points $P$ and $Q$. Prove that the incenter of triangle $PA_0Q$ lies on the altitude of triangle $ABC$.

2018 India Regional Mathematical Olympiad, 6

Tags: geometry , incenter
Let $ABC$ be an acute-angled triangle with $AB<AC$. Let $I$ be the incentre of triangle $ABC$, and let $D,E,F$ be the points where the incircle touches the sides $BC,CA,AB,$ respectively. Let $BI,CI$ meet the line $EF$ at $Y,X$ respectively. Further assume that both $X$ and $Y$ are outside the triangle $ABC$. Prove that $\text{(i)}$ $B,C,Y,X$ are concyclic. $\text{(ii)}$ $I$ is also the incentre of triangle $DYX$.

2010 All-Russian Olympiad, 2

Could the four centers of the circles inscribed into the faces of a tetrahedron be coplanar? (vertexes of tetrahedron not coplanar)