This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2011 IMO Shortlist, 5

Let $ABC$ be a triangle with incentre $I$ and circumcircle $\omega$. Let $D$ and $E$ be the second intersection points of $\omega$ with $AI$ and $BI$, respectively. The chord $DE$ meets $AC$ at a point $F$, and $BC$ at a point $G$. Let $P$ be the intersection point of the line through $F$ parallel to $AD$ and the line through $G$ parallel to $BE$. Suppose that the tangents to $\omega$ at $A$ and $B$ meet at a point $K$. Prove that the three lines $AE,BD$ and $KP$ are either parallel or concurrent. [i]Proposed by Irena Majcen and Kris Stopar, Slovenia[/i]

2023 Princeton University Math Competition, 13

Tags: incenter , geometry
13. Let $\triangle T B D$ be a triangle with $T B=6, B D=8$, and $D T=7$. Let $I$ be the incenter of $\triangle T B D$, and let $T I$ intersect the circumcircle of $\triangle T B D$ at $M \neq T$. Let lines $T B$ and $M D$ intersect at $Y$, and let lines $T D$ and $M B$ intersect at $X$. Let the circumcircles of $\triangle Y B M$ and $\triangle X D M$ intersect at $Z \neq M$. If the area of $\triangle Y B Z$ is $x$ and the area of $\triangle X D Z$ is $y$, then the ratio $\frac{x}{y}$ can be expressed as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

2010 Sharygin Geometry Olympiad, 8

Tags: incenter , geometry
Let $AH$ be the altitude of a given triangle $ABC.$ The points $I_b$ and $I_c$ are the incenters of the triangles $ABH$ and $ACH$ respectively. $BC$ touches the incircle of the triangle $ABC$ at a point $L.$ Find $\angle LI_bI_c.$

2000 Belarus Team Selection Test, 7.2

Given a triangle $ABC$. The points $A$, $B$, $C$ divide the circumcircle $\Omega$ of the triangle $ABC$ into three arcs $BC$, $CA$, $AB$. Let $X$ be a variable point on the arc $AB$, and let $O_{1}$ and $O_{2}$ be the incenters of the triangles $CAX$ and $CBX$. Prove that the circumcircle of the triangle $XO_{1}O_{2}$ intersects the circle $\Omega$ in a fixed point.

2012 Romanian Master of Mathematics, 6

Let $ABC$ be a triangle and let $I$ and $O$ denote its incentre and circumcentre respectively. Let $\omega_A$ be the circle through $B$ and $C$ which is tangent to the incircle of the triangle $ABC$; the circles $\omega_B$ and $\omega_C$ are defined similarly. The circles $\omega_B$ and $\omega_C$ meet at a point $A'$ distinct from $A$; the points $B'$ and $C'$ are defined similarly. Prove that the lines $AA',BB'$ and $CC'$ are concurrent at a point on the line $IO$. [i](Russia) Fedor Ivlev[/i]

2002 All-Russian Olympiad Regional Round, 10.3

The perpendicular bisector to side $AC$ of triangle $ABC$ intersects side $BC$ at point $M$ (see fig.). The bisector of angle $\angle AMB$ intersects the circumcircle of triangle $ABC$ at point $K$. Prove that the line passing through the centers of the inscribed circles triangles $AKM$ and $BKM$, perpendicular to the bisector of angle $\angle AKB$. [img]https://cdn.artofproblemsolving.com/attachments/b/4/b53ec7df0643a90b835f142d99c417a2a1dd45.png[/img]

2010 ELMO Shortlist, 3

A circle $\omega$ not passing through any vertex of $\triangle ABC$ intersects each of the segments $AB$, $BC$, $CA$ in 2 distinct points. Prove that the incenter of $\triangle ABC$ lies inside $\omega$. [i]Evan O' Dorney.[/i]

2009 Oral Moscow Geometry Olympiad, 3

Altitudes $AA_1$ and $BB_1$ are drawn in the acute-angled triangle $ABC$. Prove that the perpendicular drawn from the touchpoint of the inscribed circle with the side $BC$, on the line $AC$ passes through the center of the inscribed circle of the triangle $A_1CB_1$. (V. Protasov)

2013 China Team Selection Test, 2

The circumcircle of triangle $ABC$ has centre $O$. $P$ is the midpoint of $\widehat{BAC}$ and $QP$ is the diameter. Let $I$ be the incentre of $\triangle ABC$ and let $D$ be the intersection of $PI$ and $BC$. The circumcircle of $\triangle AID$ and the extension of $PA$ meet at $F$. The point $E$ lies on the line segment $PD$ such that $DE=DQ$. Let $R,r$ be the radius of the inscribed circle and circumcircle of $\triangle ABC$, respectively. Show that if $\angle AEF=\angle APE$, then $\sin^2\angle BAC=\dfrac{2r}R$

2009 India IMO Training Camp, 1

Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$, $ r$ being inradius.

2016 Hong Kong TST, 2

Suppose that $I$ is the incenter of triangle $ABC$. The perpendicular to line $AI$ from point $I$ intersects sides $AC$ and $AB$ at points $B'$ and $C'$ respectively. Points $B_1$ and $C_1$ are placed on half lines $BC$ and $CB$ respectively, in such a way that $AB=BB_1$ and $AC=CC_1$. If $T$ is the second intersection point of the circumcircles of triangles $AB_1C'$ and $AC_1B'$, prove that the circumcenter of triangle $ATI$ lies on the line $BC$

2012 Iran MO (2nd Round), 3

The incircle of triangle $ABC$, is tangent to sides $BC,CA$ and $AB$ in $D,E$ and $F$ respectively. The reflection of $F$ with respect to $B$ and the reflection of $E$ with respect to $C$ are $T$ and $S$ respectively. Prove that the incenter of triangle $AST$ is inside or on the incircle of triangle $ABC$. [i]Proposed by Mehdi E'tesami Fard[/i]

2005 China Team Selection Test, 2

In acute angled triangle $ABC$, $BC=a$,$CA=b$,$AB=c$, and $a>b>c$. $I,O,H$ are the incentre, circumcentre and orthocentre of $\triangle{ABC}$ respectively. Point $D \in BC$, $E \in CA$ and $AE=BD$, $CD+CE=AB$. Let the intersectionf of $BE$ and $AD$ be $K$. Prove that $KH \parallel IO$ and $KH = 2IO$.

1999 Romania Team Selection Test, 2

Tags: incenter , geometry
Let $ABC$ be an acute triangle. The interior angle bisectors of $\angle ABC$ and $\angle ACB$ meet the opposite sides in $L$ and $M$ respectively. Prove that there is a point $K$ in the interior of the side $BC$ such that the triangle $KLM$ is equilateral if and only if $\angle BAC = 60^\circ$.

1994 Turkey MO (2nd round), 6

The incircle of triangle $ABC$ touches $BC$ at $D$ and $AC$ at $E$. Let $K$ be the point on $CB$ with $CK=BD$, and $L$ be the point on $CA$ with $AE=CL$. Lines $AK$ and $BL$ meet at $P$. If $Q$ is the midpoint of $BC$, $I$ the incenter, and $G$ the centroid of $\triangle ABC$, show that: $(a)$ $IQ$ and $AK$ are parallel, $(b)$ the triangles $AIG$ and $QPG$ have equal area.

2021 China Team Selection Test, 1

A cyclic quadrilateral $ABCD$ has circumcircle $\Gamma$, and $AB+BC=AD+DC$. Let $E$ be the midpoint of arc $BCD$, and $F (\neq C)$ be the antipode of $A$ [i]wrt[/i] $\Gamma$. Let $I,J,K$ be the incenter of $\triangle ABC$, the $A$-excenter of $\triangle ABC$, the incenter of $\triangle BCD$, respectively. Suppose that a point $P$ satisfies $\triangle BIC \stackrel{+}{\sim} \triangle KPJ$. Prove that $EK$ and $PF$ intersect on $\Gamma.$

2020 Mexico National Olympiad, 2

Let $ABC$ be a triangle with incenter $I$. The line $BI$ meets $AC$ at $D$. Let $P$ be a point on $CI$ such that $DI=DP$ ($P\ne I$), $E$ the second intersection point of segment $BC$ with the circumcircle of $ABD$ and $Q$ the second intersection point of line $EP$ with the circumcircle of $AEC$. Prove that $\angle PDQ=90^\circ$. [i]Proposed by Ariel García[/i]

2010 Poland - Second Round, 1

In the convex pentagon $ABCDE$ all interior angles have the same measure. Prove that the perpendicular bisector of segment $EA$, the perpendicular bisector of segment $BC$ and the angle bisector of $\angle CDE$ intersect in one point.

2020 Sharygin Geometry Olympiad, 18

Bisectors $AA_1$, $BB_1$, and $CC_1$ of triangle $ABC$ meet at point $I$. The perpendicular bisector to $BB_1$ meets $AA_1,CC_1$ at points $A_0,C_0$ respectively. Prove that the circumcircles of triangles $A_0IC_0$ and $ABC$ touch.

2019 BMT Spring, 13

Triangle $\vartriangle ABC$ has $AB = 13$, $BC = 14$, and $CA = 15$. $\vartriangle ABC$ has incircle $\gamma$ and circumcircle $\omega$. $\gamma$ has center at $I$. Line $AI$ is extended to hit $\omega$ at $P$. What is the area of quadrilateral $ABPC$?

2020 Iranian Geometry Olympiad, 2

Let $\triangle ABC$ be an acute-angled triangle with its incenter $I$. Suppose that $N$ is the midpoint of the arc $\overarc{BAC}$ of the circumcircle of triangle $\triangle ABC$, and $P$ is a point such that $ABPC$ is a parallelogram.Let $Q$ be the reflection of $A$ over $N$ and $R$ the projection of $A$ on $\overline{QI}$. Show that the line $\overline{AI}$ is tangent to the circumcircle of triangle $\triangle PQR$ [i]Proposed by Patrik Bak - Slovakia[/i]

2014 Harvard-MIT Mathematics Tournament, 30

Let $ABC$ be a triangle with circumcenter $O$, incenter $I$, $\angle B=45^\circ$, and $OI\parallel BC$. Find $\cos\angle C$.

2024 Dutch IMO TST, 2

Let $ABC$ be a triangle. A point $P$ lies on the segment $BC$ such that the circle with diameter $BP$ passes through the incenter of $ABC$. Show that $\frac{BP}{PC}=\frac{c}{s-c}$ where $c$ is the length of segment $AB$ and $2s$ is the perimeter of $ABC$.

2021 Sharygin Geometry Olympiad, 8.1

Let $ABCD$ be a convex quadrilateral. The circumcenter and the incenter of triangle $ABC$ coincide with the incenter and the circumcenter of triangle $ADC$ respectively. It is known that $AB = 1$. Find the remaining sidelengths and the angles of $ABCD$.

2012 Indonesia TST, 3

Given a cyclic quadrilateral $ABCD$ with the circumcenter $O$, with $BC$ and $AD$ not parallel. Let $P$ be the intersection of $AC$ and $BD$. Let $E$ be the intersection of the rays $AB$ and $DC$. Let $I$ be the incenter of $EBC$ and the incircle of $EBC$ touches $BC$ at $T_1$. Let $J$ be the excenter of $EAD$ that touches $AD$ and the excircle of $EAD$ that touches $AD$ touches $AD$ at $T_2$. Let $Q$ be the intersection between $IT_1$ and $JT_2$. Prove that $O,P,Q$ are collinear.