Found problems: 1389
2021 Peru IMO TST, P2
In an acute triangle $ABC$, its inscribed circle touches the sides $AB,BC$ at the points $C_1,A_1$ respectively. Let $M$ be the midpoint of the side $AC$, $N$ be the midpoint of the arc $ABC$ on the circumcircle of triangle $ABC$, and $P$ be the projection of $M$ on the segment $A_1C_1$.
Prove that the points $P,N$ and the incenter $I$ of the triangle $ABC$ lie on the same line.
2013 National Olympiad First Round, 21
Let $D$ and $E$ be points on side $[AB]$ of a right triangle with $m(\widehat{C})=90^\circ$ such that $|AD|=|AC|$ and $|BE|=|BC|$. Let $F$ be the second intersection point of the circumcircles of triangles $AEC$ and $BDC$. If $|CF|=2$, what is $|ED|$?
$
\textbf{(A)}\ \sqrt 2
\qquad\textbf{(B)}\ 1+\sqrt 2
\qquad\textbf{(C)}\ 2
\qquad\textbf{(D)}\ 2\sqrt 2
\qquad\textbf{(E)}\ \text{None of above}
$
2018 Sharygin Geometry Olympiad, 5
Let $\omega$ be the incircle of a triangle $ABC$. The line passing though the incenter $I$ and parallel to $BC$ meets $\omega$ at $A_b$ and $A_c$ ($A_b$ lies in the same semi plane with respect to $AI$ as $B$). The lines $BA_b$ and $CA_c$ meet at $A_1$. The points $B_1$ and $C_1$ are defined similarly. prove that $AA_1,BB_1,CC_1$ concur.
1998 Iran MO (2nd round), 2
Let $ABC$ be a triangle. $I$ is the incenter of $\Delta ABC$ and $D$ is the meet point of $AI$ and the circumcircle of $\Delta ABC$. Let $E,F$ be on $BD,CD$, respectively such that $IE,IF$ are perpendicular to $BD,CD$, respectively. If $IE+IF=\frac{AD}{2}$, find the value of $\angle BAC$.
2017 Bosnia and Herzegovina Team Selection Test, Problem 1
Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB\plus{}AC\equal{}3BC$.
2019 CHKMO, 3
The incircle of $\triangle{ABC}$, with incentre $I$, meets $BC, CA$, and $AB$ at $D,E$, and $F$, respectively. The line $EF$ cuts the lines $BI$, $CI, BC$, and $DI$ at $K,L,M$, and $Q$, respectively. The line through the midpoint of $CL$ and $M$ meets $CK$ at $P$.
(a) Determine $\angle{BKC}$.
(b) Show that the lines $PQ$ and $CL$ are parallel.
2017 Junior Balkan Team Selection Tests - Romania, 3
Let $I$ be the incenter of the scalene $\Delta ABC$, such, $AB<AC$, and let $I'$ be the reflection of point $I$ in line $BC$. The angle bisector $AI$ meets $BC$ at $D$ and circumcircle of $\Delta ABC$ at $E$. The line $EI'$ meets the circumcircle at $F$. Prove, that,
$\text{(i) } \frac{AI}{IE}=\frac{ID}{DE}$
$\text{(ii) } IA=IF$
2020 Dutch IMO TST, 1
In acute-angled triangle $ABC, I$ is the center of the inscribed circle and holds $| AC | + | AI | = | BC |$. Prove that $\angle BAC = 2 \angle ABC$.
2014 ELMO Shortlist, 8
In triangle $ABC$ with incenter $I$ and circumcenter $O$, let $A',B',C'$ be the points of tangency of its circumcircle with its $A,B,C$-mixtilinear circles, respectively. Let $\omega_A$ be the circle through $A'$ that is tangent to $AI$ at $I$, and define $\omega_B, \omega_C$ similarly. Prove that $\omega_A,\omega_B,\omega_C$ have a common point $X$ other than $I$, and that $\angle AXO = \angle OXA'$.
[i]Proposed by Sammy Luo[/i]
2002 Belarusian National Olympiad, 6
The altitude $CH$ of a right triangle $ABC$, with $\angle{C}=90$, cut the angles bisectors $AM$ and $BN$ at $P$ and $Q$, and let $R$ and $S$ be the midpoints of $PM$ and $QN$. Prove that $RS$ is parallel to the hypotenuse of $ABC$
2005 MOP Homework, 6
Consider the three disjoint arcs of a circle determined by three points of the circle. We construct a circle around each of the midpoint of every arc which goes the end points of the arc. Prove that the three circles pass through a common point.
2010 Federal Competition For Advanced Students, Part 1, 4
The the parallel lines through an inner point $P$ of triangle $\triangle ABC$ split the triangle into three parallelograms and three triangles adjacent to the sides of $\triangle ABC$.
(a) Show that if $P$ is the incenter, the perimeter of each of the three small triangles equals the length of the adjacent side.
(b) For a given triangle $\triangle ABC$, determine all inner points $P$ such that the perimeter of each of the three small triangles equals the length of the adjacent side.
(c) For which inner point does the sum of the areas of the three small triangles attain a minimum?
[i](41st Austrian Mathematical Olympiad, National Competition, part 1, Problem 4)[/i]
1995 India National Olympiad, 4
Let $ABC$ be a triangle and a circle $\Gamma'$ be drawn lying outside the triangle, touching its incircle $\Gamma$ externally, and also the two sides $AB$ and $AC$. Show that the ratio of the radii of the circles $\Gamma'$ and $\Gamma$ is equal to $\tan^ 2 { \left( \dfrac{ \pi - A }{4} \right) }.$
2007 Rioplatense Mathematical Olympiad, Level 3, 2
Let $ABC$ be a triangle with incenter $I$ . The circle of center $I$ which passes through $B$ intersects $AC$ at points $E$ and $F$, with $E$ and $F$ between $A $ and $C$ and different from each other. The circle circumscribed to triangle $IEF$ intersects segments $EB$ and $FB$ at $Q$ and $R$, respectively. Line $QR$ intersects the sides $A B$ and $B C$ at $P$ and $S$, respectively.
If $a , b$ and $c$ are the measures of the sides $B C, CA$ and $A B$, respectively, calculate the measurements of $B P$ and $B S$.
1988 China Team Selection Test, 3
In triangle $ABC$, $\angle C = 30^{\circ}$, $O$ and $I$ are the circumcenter and incenter respectively, Points $D \in AC$ and $E \in BC$, such that $AD = BE = AB$. Prove that $OI = DE$ and $OI \bot DE$.
2009 Argentina Iberoamerican TST, 3
Let $ ABC$ be an isosceles triangle with $ AC \equal{} BC.$ Its incircle touches $ AB$ in $ D$ and $ BC$ in $ E.$ A line distinct of $ AE$ goes through $ A$ and intersects the incircle in $ F$ and $ G.$ Line $ AB$ intersects line $ EF$ and $ EG$ in $ K$ and $ L,$ respectively. Prove that $ DK \equal{} DL.$
2009 Korea National Olympiad, 1
Let $I, O$ be the incenter and the circumcenter of triangle $ABC$, and $D,E,F$ be the circumcenters of triangle $ BIC, CIA, AIB$. Let $ P, Q, R$ be the midpoints of segments $ DI, EI, FI $. Prove that the circumcenter of triangle $PQR $, $M$, is the midpoint of segment $IO$.
2018 Korea National Olympiad, 1
Let there be an acute triangle $\triangle ABC$ with incenter $I$. $E$ is the foot of the perpendicular from $I$ to $AC$. The line which passes through $A$ and is perpendicular to $BI$ hits line $CI$ at $K$. The line which passes through $A$ and is perpendicular to $CI$ hits the line which passes through $C$ and is perpendicular to $BI$ at $L$. Prove that $E, K, L$ are colinear.
2010 Tournament Of Towns, 6
In acute triangle $ABC$, an arbitrary point $P$ is chosen on altitude $AH$. Points $E$ and $F$ are the midpoints of sides $CA$ and $AB$ respectively. The perpendiculars from $E$ to $CP$ and from $F$ to $BP$ meet at point $K$. Prove that $KB = KC$.
Kyiv City MO Juniors Round2 2010+ geometry, 2012.8.5
In the triangle $ABC$ on the sides $AB$ and $AC$ outward constructed equilateral triangles $ABD$ and $ACE$. The segments $CD$ and $BE$ intersect at point $F$. It turns out that point $A$ is the center of the circle inscribed in triangle $ DEF$. Find the angle $BAC$.
(Rozhkova Maria)
2011 Iran Team Selection Test, 6
The circle $\omega$ with center $O$ has given. From an arbitrary point $T$ outside of $\omega$ draw tangents $TB$ and $TC$ to it. $K$ and $H$ are on $TB$ and $TC$ respectively.
[b]a)[/b] $B'$ and $C'$ are the second intersection point of $OB$ and $OC$ with $\omega$ respectively. $K'$ and $H'$ are on angle bisectors of $\angle BCO$ and $\angle CBO$ respectively such that $KK' \bot BC$ and $HH'\bot BC$. Prove that $K,H',B'$ are collinear if and only if $H,K',C'$ are collinear.
[b]b)[/b] Consider there exist two circle in $TBC$ such that they are tangent two each other at $J$ and both of them are tangent to $\omega$.and one of them is tangent to $TB$ at $K$ and other one is tangent to $TC$ at $H$. Prove that two quadrilateral $BKJI$ and $CHJI$ are cyclic ($I$ is incenter of triangle $OBC$).
1989 USAMO, 4
Let $ABC$ be an acute-angled triangle whose side lengths satisfy the inequalities $AB < AC < BC$. If point $I$ is the center of the inscribed circle of triangle $ABC$ and point $O$ is the center of the circumscribed circle, prove that line $IO$ intersects segments $AB$ and $BC$.
Durer Math Competition CD Finals - geometry, 2018.C+2
Given an $ABC$ triangle. Let $D$ be an extension of section $AB$ beyond $A$ such that that $AD = BC$ and $E$ is the extension of the section $BC$ beyond $B$ such that $BE = AC$. Prove that the circumcircle of triangle $DEB$ passes through the center of the inscribed circle of triangle $ABC$.
2002 Kazakhstan National Olympiad, 1
Let $ O $ be the center of the inscribed circle of the triangle $ ABC $, tangent to the side of $ BC $. Let $ M $ be the midpoint of $ AC $, and $ P $ be the intersection point of $ MO $ and $ BC $. Prove that $ AB = BP $ if $ \angle BAC = 2 \angle ACB $.
2014 Balkan MO Shortlist, G7
Let $I$ be the incenter of $\triangle ABC$ and let $H_a$, $H_b$, and $H_c$ be the orthocenters of $\triangle BIC$ , $\triangle CIA$, and $\triangle AIB$, respectively. The lines $H_aH_b$ meets $AB$ at $X$ and the line $H_aH_c$ meets $AC$ at $Y$. If the midpoint $T$ of the median $AM$ of $\triangle ABC$ lies on $XY$, prove that the line $H_aT$ is perpendicular to $BC$